PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Safe Data Gathering in Physical Spaces

GHC 4405

Abstract: Reliable and efficient acquisition of data from physical spaces has widespread applications in industry, policy, defense, and humanitarian work. Unmanned Aerial Vehicles (UAVs) are an excellent choice for data gathering applications, due to their capability of gaining information at multiple scales. A robust data gathering system needs to reason about multi-resolution nature of information [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Learning to learn from simulation: Using simulations to learn faster on robots

NSH 4305

Abstract: Learning for control is capable of acquiring controllers in novel task scenarios, paving the path to autonomous robots. However, typical learning approaches can be prohibitively expensive in terms of robot experiments, and policies learned in simulation do not transfer directly due to modelling inaccuracies. This encourages learning information from simulation that has a higher [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Learning with Clusters

GHC 8102

Abstract: Clustering, the problem of grouping similar data, has been extensively studied since at least the 1950's. As machine learning becomes more prominent, clustering has evolved from primarily a data analysis tool into an integrated component of complex robotic and machine learning systems, including those involving dimensionality reduction, anomaly detection, network analysis, image segmentation and [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Sensing, Measuring, and Modeling Social Signals in Nonverbal Communication

GHC 4405

Abstract: Humans convey their thoughts, emotions, and intentions through a concert of social displays: voice, facial expressions, hand gestures, and body posture, collectively referred to as social signals. Despite advances in machine perception, machines are unable to discern the subtle and momentary nuances that carry so much of the information and context of human communication. [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Design and Evaluation of Robust Control Methods for Robotic Transfemoral Prostheses

NSH 3305

Abstract: Amputees face a number of gait deficits due to a lack of control and power from their mechanically-passive prostheses. Of crucial importance among these deficits are those related to balance, as falls and a fear of falling can cause an avoidance of activity that leads to further debilitation. In this thesis, we investigate the [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Intra-Robot Replanning and Learning for Multi-Robot Teams in Complex Dynamic Domains

GHC 6501

Abstract: In complex dynamic multi-robot domains, there is a set of individual robots that must coordinate together through a centralized planner that inevitably makes assumptions based on a model of the environment and the actions of the individual. Eventually, the individuals may encounter failures, because the centralized planner’s models of the states and actions are [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Light Sheet Depth Imaging

NSH 3305

Abstract: Once confined to industrial manufacturing facilities and research labs, robots are increasingly entering everyday life. As specialized robots are developed for tasks such as autonomous driving, package delivery, and aerial videography, there is a growing need for affordable depth sensing technology. Robots use sensors like scanning LIDAR, depth cameras, and passive stereo cameras to [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Towards Generalization and Efficiency in Reinforcement Learning

GHC 8102

Abstract: In classic supervised machine learning, a learning agent behaves as a passive observer: it receives examples from some external environment which it has no control over and then makes predictions. Reinforcement Learning (RL), on the other hand, is fundamentally interactive: an autonomous agent must learn how to behave in an unknown and possibly hostile [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Planning under Uncertainty with Multiple Heuristics

GHC 6115

Abstract: Many robotic tasks, such as mobile manipulation, often require interaction with unstructured environments and are subject to imperfect sensing and actuation. This brings substantial uncertainty into the problems. Reasoning under this uncertainty can provide higher level of robustness but is computationally significantly more challenging. More specifically, sequential decision making under motion and sensing uncertainty [...]