PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Deep Learning for Tactile Sensing: Development to Deployment

NSH 1305

Abstract: The role of sensing is widely acknowledged for robots interacting with the physical environment. However, few contemporary sensors have gained widespread use among roboticists. This thesis proposes a framework for incorporating sensors into a robot learning paradigm, from development to deployment, through the lens of ReSkin -- a versatile and scalable magnetic tactile sensor. [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Learning and Translating Temporal Abstractions of Behaviour across Humans and Robots

NSH 4305

Abstract: Humans are remarkably adept at learning to perform tasks by imitating other people demonstrating these tasks. Key to this is our ability to reason abstractly about the high-level strategy of the task at hand (such as the recipe of cooking a dish) and the behaviours needed to solve this task (such as the behaviour [...]

PhD Thesis Defense
Extern
Robotics Institute,
Carnegie Mellon University

Assistive value alignment using in-situ naturalistic human behaviors

NSH 3305

Abstract: As collaborative robots are increasingly deployed in personal environments, such as the home, it is critical they take actions to complete tasks consistent with personal preferences. Determining personal preferences for completing household chores, however, is challenging. Many household chores, such as setting a table or loading a dishwasher, are sequential and open-vocabulary, creating a [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Exploration for Continually Improving Robots

NSH 4305

Abstract: Data-driven learning is a powerful paradigm for enabling robots to learn skills. Current prominent approaches involve collecting large datasets of robot behavior via teleoperation or simulation, to then train policies. For these policies to generalize to diverse tasks and scenes, there is a large burden placed on constructing a rich initial dataset, which is [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Domesticating Soft Robotics Research and Development with Accessible Biomaterials

Abstract:   Current trends in robotics design and engineering are typically focused on high value applications where high performance, precision, and robustness take precedence over cost, accessibility, and environmental impact.  In this paradigm, the capability landscape of robotics is largely shaped by access to capital and the promise of economic return. This thesis explores an alternative [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Moving Lights and Cameras for Better 3D Perception of Indoor Scenes

GHC 6501

Abstract: Decades of research on computer vision have highlighted the importance of active sensing -- where an agent controls the parameters of the sensors to improve perception. Research on active perception in the context of robotic manipulation has demonstrated many novel and robust sensing strategies involving a multitude of sensors like RGB and RGBD cameras [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Trustworthy Learning using Uncertain Interpretation of Data

GHC 6501

Abstract: Motivated by the potential of Artificial Intelligence (AI) in high-cost and safety-critical applications, and recently also by the increasing presence of AI in our everyday lives, Trustworthy AI has grown in prominence as a broad area of research encompassing topics such as interpretability, robustness, verifiable safety, fairness, privacy, accountability, and more. This has created [...]

PhD Thesis Defense
Courtesy Student
Robotics Institute,
Carnegie Mellon University

Whisker-Inspired Sensors for Unstructured Environments

NSH 4305

Abstract: Robots lack the perception abilities of animals, which is one reason they can not achieve complex control in outdoor unstructured environments with the same ease as animals. One cause of the perception gap is the constraints researchers place on the environments in which they test new sensors so algorithms can correctly interpret data from [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Differentiable Convex Modeling for Robotic Planning and Control

NSH 4305

Abstract: Robotic simulation, planning, estimation, and control, have all been built on top of numerical optimization. In this same time, modern convex optimization has matured into a robust technology delivering globally optimal solutions in polynomial time. With advances in differentiable optimization and custom solvers capable of producing smooth derivatives, convex modeling has become fast, reliable, [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Towards a Universal Data Engine for Robotics and Beyond

GHC 4405

Abstract: Robotics researchers have been attempting to extend data-driven breakthroughs in fields like computer vision and language processing into robot learning. However, unlike vision or language domains where massive amounts of data is readily available on the internet, training robotic policies relies on physical and interactive data collected via interacting with the physical world -- [...]