PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Redefining the Perception-Action Interface: Visual Action Representations for Contact-Centric Manipulation

GHC 6501

Abstract:  In robotics, understanding the link between perception and action is pivotal. Typically, perception systems process sensory data into state representations like  segmentations and bounding boxes, which a planner uses to plan actions. However, this state estimation approach can fail in environments with partial observability, and in cases with challenging object properties like transparency and deformability.  [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Multi-Human 3D Reconstruction from Monocular Videos

NSH 4305

Abstract: We study the problem of multi-human 3D reconstruction from videos captured in the wild. Human movements are dynamic, and accurately reconstructing them in various settings is crucial for developing immersive social telepresence, assistive humanoid robots, and augmented reality systems. However, creating such a system requires addressing fundamental issues with previous works regarding the data [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

How I Learned to Love Blobs: The Power of Gaussian Representations in Differentiable Rendering and Optimization

NSH 3305

Abstract: In this thesis, we explore the use of Gaussian Representations in multiple application areas of computer vision and robotics. In particular, we design a ray-based differentiable renderer for 3D Gaussians that can be used to solve multiple classic computer vision problems in a unified manner. For example, we can reconstruct 3D shapes from color, [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Towards Photorealistic Dynamic Capture and Animation of Human Hair and Head

NSH 4305

Abstract: Realistic human avatars play a key role in immersive virtual telepresence. To reach a high level of realism, a human avatar needs to faithfully reflect human appearance. A human avatar should also be drivable and express natural motions. Existing works have made significant progress in building drivable realistic face avatars, but they rarely include [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Modeling Dynamic Clothing for Data-Driven Photorealistic Avatars

NSH 3305

Abstract: In this thesis, we aim to build photorealistic animatable avatars of humans wearing complex clothing in a data-driven manner. Such avatars will be a critical technology to enable future applications such as immersive telepresence in Virtual Reality (VR) and Augmented Reality (AR). Existing full-body avatars that jointly model geometry and view-dependent texture using Variational [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Manipulation Among Movable Objects for Pick-and-Place Tasks in Cluttered 3D Workspaces

NSH 1305

Abstract: In cluttered real-world workspaces, simple pick-and-place tasks for robot manipulators can be quite challenging to solve. Often there is no collision-free trajectory that allows the robot to grasp and extract a desired object from the scene. This requires motion planning algorithms to reason about rearranging some of the “movable” clutter in the scene so [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Generalizable Dexterity with Reinforcement Learning

GHC 4405

Abstract: Dexterity, the ability to perform complex interactions with the physical world, is at the core of robotics. However, existing research in robot manipulation has been focused on tasks that involve limited dexterity, such as pick-and-place. The motor skills of the robots are often quasi-static, have a predefined or limited sequence of contact events, and [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Sample-Efficient Reinforcement Learning with applications in Nuclear Fusion

NSH 4305

Abstract: In many practical applications of reinforcement learning (RL), it is expensive to observe state transitions from the environment. In the problem of plasma control for nuclear fusion, the motivating example of this thesis, determining the next state for a given state-action pair requires querying an expensive transition function which can lead to many hours [...]

PhD Thesis Defense
Extern
Robotics Institute,
Carnegie Mellon University

Social Navigation with Pedestrian Groups

NSH 4305

Abstract: Autonomous navigation in human crowds (i.e., social navigation) presents several challenges: The robot often needs to rely on its noisy sensors to identify and localize pedestrians in human crowds; the robot needs to plan efficient paths to reach its goals; the robot needs to do so in a safe and socially appropriate manner. Recent [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Design Iteration of Dexterous Compliant Robotic Manipulators

GHC 6501

Abstract: The goal of personal robotics is to have robots in homes performing everyday tasks efficiently to improve our quality of life. Towards this end, manipulators are needed which are low cost, safe around humans, and approach human-level dexterity. However, existing off-the-shelf manipulators are expensive both in cost and manufacturing time, difficult to repair, and [...]