PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Learning Multi-Modal Navigation in Unstructured Environments

Abstract: A robot that operates efficiently in a team with humans in an unstructured outdoor environment must translate commands into actions from a modality intuitive to its operator. The robot must be able to perceive the world as humans do so that the actions taken by the robot reflect the nuances of natural language and [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Towards Modular and Differentiable Autonomous Driving

NSH 4305

Abstract: The classical "modular and cascaded" autonomy stack (object detection, tracking, trajectory prediction, then planning and control) has been widely used for interactive autonomous systems such as self-driving cars due to its interpretability and fast development cycle. In this thesis, we advocate the use of such a modular stack but improve its accuracy and robustness [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Control Input and Natural Gaze for Goal Prediction in Shared Control

GHC 4405

Abstract: Teleoperated systems are used widely in deployed robots today, for such tasks as space exploration, disaster recovery, or assisted manipulation. However, teleoperated systems are difficult to control, especially when performing high-dimensional, contact-rich tasks like manipulation. One approach to ease teleoperated manipulation is shared control; this strategy combines the user's direct control input with an [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Liquid Metal Actuators

NSH 4305

Abstract: This thesis contributes to the field of soft actuators by introducing a generalized framework of actuators from liquid metals. The evolution of robotic actuators has enabled robots to achieve a diversity of motions. Like natural muscles, which converts chemical energy into mechanical work in response to electrical stimuli from the nervous system, actuators are [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Learning Structured World Model for Deformable Object Manipulation

NSH 4305

Abstract: Manipulation of deformable objects challenges common assumptions in robotic manipulation, such as low-dimension state representation, known dynamics, and minimal occlusion. Deformable objects have high intrinsic state representation, complex dynamics with high degrees of freedom, and severe self-occlusion. These properties make them difficult for state estimation and planning. In this thesis, we introduce benchmarks and [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Object Pose Estimation without Direct Supervision

NSH 4305

Abstract: Currently, robot manipulation is a special purpose tool, restricted to isolated environments with a fixed set of objects. In order to make robot manipulation more general, robots need to be able to perceive and interact with a large number of objects in cluttered scenes. Traditionally, object pose has been used as a representation to [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Heuristic Search Based Planning by Minimizing Anticipated Search Efforts

Abstract: We focus on relatively low dimensional robot motion planning problems, such as planning for navigation of a self-driving vehicle, unmanned aerial vehicles (UAVs), and footstep planning for humanoids. In these problems, there is a need for fast planning, potentially compromising the solution quality. Often, we want to plan fast but are also interested in [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Accelerating Numerical Methods for Optimal Control

NSH 3305

Abstract:  Many modern control methods, such as model-predictive control, rely heavily on solving optimization problems in real time. In particular, the ability to efficiently solve optimal control problems has enabled many of the recent breakthroughs in achieving highly dynamic behaviors for complex robotic systems. The high computational requirements of these algorithms demand novel algorithms tailor-suited [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

3D Reconstruction using Differential Imaging

GHC 4405

Abstract: 3D reconstruction has been at the core of many computer vision applications, including autonomous driving, visual inspection in manufacturing, and augmented and virtual reality (AR/VR). Because monocular 3D sensing is fundamentally ill-posed, many techniques aiming for accurate reconstruction use multiple captures to solve the inverse problem. Depending on the amount of change in these [...]

PhD Thesis Defense
Jacky Liang
PhD Student
Robotics Institute, Carnegie Mellon University

Learning with Structured Priors for Robust Robot Manipulation

NSH 4305

Abstract: Robust and generalizable robots that can autonomously manipulate objects in semi-structured environments can bring material benefits to society. Data-driven learning approaches are crucial for enabling such systems by identifying and exploiting patterns in semi-structured environments, allowing robots to adapt to novel scenarios with minimal human supervision. However, despite significant prior work in learning for [...]