PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Teleoperation via Intuition: Safe and Intent Oriented Navigation

Abstract: This thesis aims to enable seamless teleoperation of a mobile robot by a human operator, such that the robot navigates in unstructured environments following the operator’s intent intuitively, safely, and efficiently. The roles of the human and robot are disproportionate in traditional teleoperation: The human is responsible for most of the autonomy of the [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Towards the Automated Design of Neural Networks

Abstract: Neural architecture search (NAS) is recently proposed to automate the process of designing network architectures. Instead of manually designing network architectures, NAS automatically finds the optimal architecture in a data-driven way. Despite its impressive progress, NAS is still far from being widely adopted as a common paradigm for architecture design in practice. This thesis [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Dynamical Model Learning and Inversion for Aggressive Quadrotor Flight

Quadrotor applications have seen a surge recently and many tasks require precise and accurate controls. Flying fast is critical in many applications and the limited onboard power source makes completing tasks quickly even more important. Staying on a desired course while traveling at high speeds and high accelerations is difficult due to complex and stochastic [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Development of an Agile and Dexterous Balancing Mobile Manipulator Robot

Abstract: The proposed thesis work focuses on the design and control of a new unique agile and dexterous mobile manipulator, the Carnegie Mellon University (CMU) ballbot. The CMU ballbot is a human-sized dynamically stable mobile robot that balances on a single ball. We present the development and integration of a new pair of seven-degree-of-freedom (7-DOF) [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Accelerating Numerical Methods for Optimal Control

Abstract: Many modern control methods, such as model-predictive control, rely heavily on solving optimization problems in real time. In particular, the ability to efficiently solve optimal control problems has enabled many of the recent breakthroughs in achieving highly dynamic behaviors for complex robotic systems. The high computational requirements of these algorithms demand novel algorithms tailor-suited [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Robust Object Representations for Robot Manipulation

Abstract: As robots become more common in our daily lives, they will need to interact with many different environments and countless types of objects. While we, as humans, can easily understand an object after seeing it only once, this task is not trivial for robots. Researchers have, for the most part, been left with two [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Visual Representation and Recognition without Human Supervision

Abstract: Visual recognition models have seen great advancements by relying on large-scale, carefully curated datasets with human annotations. Most computer vision models leverage human supervision to either construct strong initial representations (e.g. using the ImageNet dataset) or for modeling the visual concepts relevant for downstream tasks (e.g. MS-COCO for object detection). In this thesis, we [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Heuristic Search Based Planning by Minimizing Anticipated Search Efforts

Abstract: Robot planning problems in dynamic environments, such as navigation among pedestrians, driving at high-speed on densely populated roads, and manipulation for collaborative tasks alongside humans, necessitate efficient planning. Bounded-suboptimal heuristic search algorithms are a popular alternative to optimal heuristic search algorithms that compromise solution quality for computation speed. Specifically, these searches aim to find [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Liquid Metal Actuators

Abstract: Bioinspired robotic actuators arise from the advances in soft materials and activation methods to achieve desired performance. Because of their intrinsic compliance, actuators built from soft materials and liquids can achieve elastic resilience and adaptability similar to their biological counterparts. Liquid metals provide great opportunities for creating an artificial muscle that generates forces at [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Self-Learning of Structured Visual Representations

Abstract: Most computer vision models in deployment today are not learning. Instead, they are in a "test" mode, where they will behave the same way perpetually, until they are replaced by newer models. This is a problem, because it means the models may perform poorly as soon as their "test" environment becomes different from their [...]