PhD Thesis Defense
Courtesy Student
Robotics Institute,
Carnegie Mellon University

Whisker-Inspired Sensors for Unstructured Environments

NSH 4305

Abstract: Robots lack the perception abilities of animals, which is one reason they can not achieve complex control in outdoor unstructured environments with the same ease as animals. One cause of the perception gap is the constraints researchers place on the environments in which they test new sensors so algorithms can correctly interpret data from [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Strategy and Skill Learning for Physics-based Table Tennis Animation

Abstract: Recent advancements in physics-based character animation leverage deep learning to generate agile and natural motion, enabling characters to execute movements such as backflips, boxing, and tennis. However, reproducing the selection and use of diverse motor skills in dynamic environments to solve complex tasks, as humans do, still remains a challenge. We present a strategy [...]

RI Seminar
Nils Napp
Assistant Professor
Electrical and Computer Engineering, Cornell University

Abstraction Barriers for Embodied Algorithms

1403 Tepper School Building

Abstract: Designing robotic systems to reliably modify their environment typically requires expert engineers and several design iterations. This talk will cover abstraction barriers that can be used to make the process of building such systems easier and the results more predictable. By focusing on approximate mathematical representations that model the process dynamics, these representations can [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Getting Optimization layers to play well with Deep Networks: Numerical methods and Architectures

NSH 4305

Abstract: Many real-world challenges, from robotic control to resource management, can be effectively formulated as optimization problems. Recent advancements have focused on incorporating these optimization problems as layers within deep learning pipelines, enabling the explicit inclusion of auxiliary constraints or cost functions, which is crucial for applications such as enforcing physical laws, ensuring safety constraints, [...]

Faculty Events

RI Faculty Business Meeting

Newell-Simon Hall 4305

Meeting for RI Faculty. Agenda was sent via a calendar invite.

RI Seminar
Axel Krieger
Associate Professor
Department of Mechanical Engineering, Johns Hopkins Whiting School of Engineering

Autonomous Robotic Surgery: Science Fiction or Reality?

1403 Tepper School Building

Abstract:  Robotic assisted surgery (RAS) systems incorporate highly dexterous tools, hand tremor filtering, and motion scaling to enable a minimally invasive surgical approach, reducing collateral damage and patient recovery times. However, current state-of-the-art telerobotic surgery requires a surgeon operating every motion of the robot, resulting in long procedure times and inconsistent results. The advantages of [...]

VASC Seminar
Srinath Sridhar
Assistant Professor
Computer Science, Brown University

Generative Modelling for 3D Multimodal Understanding of Human Physical Interactions

3305 Newell-Simon Hall

Abstract: Generative modelling has been extremely successful in synthesizing text, images, and videos. Can the same machinery also help us better understand how to physically interact with the multimodal 3D world? In this talk, I will introduce some of my group's work in answering this question. I will first discuss how we can enable 2D [...]

Field Robotics Center Seminar
Senior Field Robotics Specialist
Robotics Institute,
Carnegie Mellon University

A retrospective, 40 Years of Field Robotics

CIC CIC Buuilding Conference Room 1, LL Level

Abstract: Chuck has been building and deploying robots in the field for the past 40 years.  In this retrospective he will touch on the robots, people and experiences that have been part of the journey.  From the early days in the 1980s with the Three Mile Island nuclear robots and the first outdoor autonomy robots [...]

MSR Thesis Defense
MSR Student / Teaching Assistant
Robotics Institute,
Carnegie Mellon University

Efficient Quadruped Mobility: Harnessing a Generalist Policy for Streamlined Planning

GHC 4405

Abstract: Navigating quadruped robots through complex, unstructured environments over long horizons remains a significant challenge in robotics. Traditional planning methods offer guarantees such as optimality and long-horizon reasoning, while learning-based methods, particularly those involving deep reinforcement learning (DRL), provide robustness and generalization. In this thesis, we present S3D-OWNS (Skilled 3D-Optimal Waypoint Navigation System), a novel [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Data Attribution for Text-to-Image Models

NSH 4305

Abstract: Large text-to-image models learn from training data to synthesize "novel" images, but how the models use the training data remains a mystery. The problem of data attribution is to identify which training images are influential for generating a given output. Specifically, removing influential images and retraining the model would prevent it from reproducing that [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Differentiable Convex Modeling for Robotic Planning and Control

NSH 4305

Abstract: Robotic simulation, planning, estimation, and control, have all been built on top of numerical optimization. In this same time, modern convex optimization has matured into a robust technology delivering globally optimal solutions in polynomial time. With advances in differentiable optimization and custom solvers capable of producing smooth derivatives, convex modeling has become fast, reliable, [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Knowledge and Data Dependence in Decision-Making

NSH 3001

Abstract: This thesis explores diverse decision-making strategies for autonomous agents by examining knowledge-dependent and data-dependent approaches in stationary and dynamic data environments. We address five core research problems across three thematic areas: knowledge-dependent, stationary data-dependent, and evolving data-dependent decision-making. We first investigate knowledge-driven decision-making within robotic swarms, characterizing vulnerabilities in systems governed by consistent rule-following [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Communication Efficient and Differentially Private Optimization

NSH 4305

Abstract: In recent years, the integration of communication efficiency and differential privacy in distributed optimization has gained significant attention, motivated by large-scale applications such as Federated Learning (FL), where both data privacy and efficient communication are critical. This thesis explores the development of novel techniques to address these challenges, with a focus on distributed mean [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Towards a Universal Data Engine for Robotics and Beyond

GHC 4405

Abstract: Robotics researchers have been attempting to extend data-driven breakthroughs in fields like computer vision and language processing into robot learning. However, unlike vision or language domains where massive amounts of data is readily available on the internet, training robotic policies relies on physical and interactive data collected via interacting with the physical world -- [...]

RI Seminar
Assistant Professor
Robotics Institute,
Carnegie Mellon University

Learning for Dynamic Robot Manipulation of Deformable and Transparent Objects

1403 Tepper School Building

Abstract: Dynamics, softness, deformability, and difficult-to-detect objects will be critical for new domains in robotic manipulation. But there are complications--including unmodelled dynamic effects, infinite-dimensional state spaces of deformable objects, and missing features from perception. This talk explores learning methods based on multi-view sensing, acoustics, physics-based regularizations, and Koopman operators and proposes a novel multi-finger soft [...]