PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Planning under Uncertainty with Multiple Heuristics

GHC 6115

Abstract: Many robotic tasks, such as mobile manipulation, often require interaction with unstructured environments and are subject to imperfect sensing and actuation. This brings substantial uncertainty into the problems. Reasoning under this uncertainty can provide higher level of robustness but is computationally significantly more challenging. More specifically, sequential decision making under motion and sensing uncertainty [...]

MSR Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Rawal Khirodkar – MSR Thesis Talk

Newell-Simon Hall 4305

Title: Leveraging Simulation for Computer Vision   Abstract: A large amount of labeled data is required to train deep neural networks. The process of data annotation on such a large scale is expensive and time-consuming. A promising alternative in this regard is to use simulation to generate labeled synthetic data. However, a network trained solely [...]

PhD Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Dexterous Manipulation via Simple Robot Hands

GHC 8102

Abstract: Most of the industrial robotic applications nowadays can only deal with pick-and-place manipulation, in which fixed graspings are the only interactions between the object and the robot hand. Simple hands, such as pinch grippers and suction cups, suffice to accomplish such tasks. However, there exist many unsolved automation problems where more dexterous manipulations are [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Maximilian Sieb – MSR Thesis Talk

Newell-Simon Hall 4305

Title: Visual Imitation Learning for Robot Manipulation   Abstract:   Imitation learning has been successfully applied to solve a variety of tasks in complex domains where an explicit reward function is not available. However, most imitation learning methods require access to the robot's actions during demonstration. This stands in a stark contrast to how we [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Enabling Role-Reversible Human-Robot Interaction by Leveraging Standardized Tools for Provider-Receiver Interactions

NSH 3305

Abstract: Developing 'social intelligence' for assistive robots to seamlessly interact with humans remains an open research challenge. However, socially assistive robots typically engage in types of interactions that already exist between humans, which makes models of human-human interactions useful to inform the design of robot social behaviors. In particular, in applications such as healthcare, therapy [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Nikhil Jog – MSR Thesis Talk

Title: Highly Miniaturized Robots for Inspection of Small Nuclear Piping   Abstract: Bomb making in the 20th century resulted in the creation of massive facilities to produce Uranium. As part of a multi-billion-dollar agenda, the measurement of radioactivity is required for the safe disposal of residual Uranium in piping. Manual techniques have proven too approximate, [...]

PhD Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Contrastive View Predictive Learning with 3D-Bottlenecked RNNs

GHC 6115

Abstract: In this talk, I will describe our recent work on neural architectures for visual recognition, which use 3D not as input nor as the desired output space, but rather as the bottleneck of the learned representations. We consider embodied agents moving in otherwise static worlds equipped with these architectures; they learn 3D visual feature [...]

MSR Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Chao Cao – MSR Thesis Talk

Newell-Simon Hall 4305

Title: Topological Path Planning for Mobile Robot Applications   Abstract: Many path planning problems in mobile robot applications can be solved more efficiently in the topological space. By using the language of topology, the richer spatial information failed to captured by graph/grid-based map representations can be explicitly expressed and exploited. With that, it is possible [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk – Tao Chen

NSH 1109

Title: Deep Reinforcement Learning with Prior Knowledge   Abstract: Deep reinforcement learning has been applied to many domains from computer games, natural language processing, recommendation systems to robotics.  While model-free reinforcement learning algorithms are promising approaches to learning policies without knowledge of the system dynamics, they usually require much more data. In this thesis, we [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Towards Understanding and Mitigating Biases

NSH 3305

Abstract: There are many problems in real life that involve collecting and aggregating evaluation from people, such as conference peer review and peer grading. In this thesis, we consider multiple sources of biases that may arise in this process: (1) human bias -- the data collected from people are noisy and reflect people's calibration criteria [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Toward Intent Recognition through Nonverbal Behaviors in Assistive Co-Manipulation

NSH 1109

Abstract: Robots are becoming more versatile, increasing the available opportunities to use them in situations that aid people in everyday tasks. For example, recent research has investigated robot manipulators for assisting people with motor impairments in activities of daily living such as eating a meal. To form successful collaborations in these interactions, researchers need to [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Anqi Yang – MSR Thesis Talk

NSH 4305

Title: 3D Object Detection from CT Scans using a Slice-and-fuse Approach   Abstract: Automatic object detection in 3D X-ray Computed Tomography imagery has recently gained research attention due to its promising applications in aviation baggage screening. The huge dimension of an individual 3D scan, however, poses formidable computational challenges when coupled with deep 3D convolutional [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Tian Ye – MSR Thesis Talk

NSH 4305

Title: Interpretable Intuitive Physics Model   Abstract: Humans have a remarkable ability to use physical commonsense and predict the effect of collisions. But do they understand the underlying factors? Can they predict if the underlying factors have changed? Interestingly, in most cases humans can predict the effects of similar collisions with different conditions such as changes [...]

PhD Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Rotational Distributions for Pose Estimation

NSH 4305

Abstract: For robots to operate robustly in the real world, they should be aware of their uncertainty, particularly when estimating the position and orientation, or pose, of objects. This uncertainty can be caused by many factors, such as occlusions, poor lighting, or object symmetry. These factors can naturally induce an inherent ambiguity in terms of [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Hunter Goforth – MSR Thesis Talk

NSH 4305

Title: Learning for Registration in 2D and 3D   Abstract: We explore the application of deep learning to 2D (image) and 3D (point cloud) registration, especially in scenarios where traditional methods can fail.   In the 2D case, we apply a recently-proposed learning method to the problem of aligning outdoor imagery taken across different seasons or [...]

PhD Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Manipulation Planning using Pushing or Pulling Primitives

NSH 3305

Abstract: Humans manipulate objects using a wide range of actions, such as grasping, pushing, pulling, in-hand rolling, and more. This observation has lead to much research about modeling and learning individual manipulation actions. To better understand the impact of action models on planning and executing manipulation actions, we applied manipulation planning with pushing and pulling [...]

Field Robotics Center Seminar
Cedric Scheerlinck
PhD Student
Australian National University

Event Cameras: Image Reconstruction, Convolutions and Color

Newell-Simon Hall 4305

Abstract: Event cameras are novel, bio-inspired visual sensors, whose pixels output asynchronous and independent timestamped spikes at local intensity changes, called ‘events’. Event cameras offer advantages over conventional frame-based cameras in terms of latency, high dynamic range (HDR) and temporal resolution. Event cameras do not output conventional image frames, thus, image reconstruction from events enables [...]

MSR Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Yeeho Song – MSR Thesis Talk

3305 Newell-Simon Hall

Title: Inverse Reinforcement Learning for Autonomous Ground Navigation Using Aerial and Satellite Observation Data   Abstract: Inverse Reinforcement Learning(IRL) is a supervised learning paradigm where a learner observes expert demonstrations to learn the hidden cost function to mimic the expert's behavior. Eliminating the need for elaborate feature engineering, deep IRL approaches have been gaining interests [...]

Field Robotics Center Seminar
Sierra Young
Assistant Professor
North Carolina State University

From Farm to Takeoff: Ground and Aerial Robots for Biological Systems Analysis

1305 Newell Simon Hall

Abstract: Biological and agricultural environments are dynamic, unstructured, and uncertain, posing challenges for environmental data collection at the necessary spatial and temporal scales to enable meaningful systems analysis. Small unmanned systems, however, can overcome some of these challenges by enabling autonomous or human-assisted image-based and in situ environmental data collection. This talk will present a suite of [...]