VASC Seminar
Bharath Hariharan
Assistant Professor
Cornell University

Vision without labels

3305 Newell-Simon Hall

Abstract: Deep learning has revolutionized all aspects of computer vision, but its successes have come from supervised learning at scale: large models trained on ever larger labeled datasets. However this reliance on labels makes these systems fragile when it comes to new scenarios or new tasks where labels are unavailable. This is in stark contrast to [...]

Faculty Events

RI Faculty Business Meeting

Newell-Simon Hall 4305

Meeting for RI Faculty. Discussions include various department topics, policies, and procedures. Generally meets weekly.

RI Seminar
Shuran Song
Assistant Professor
Robotics and Embodied AI Lab, Stanford University

Learning Meets Gravity: Robots that Learn to Embrace Dynamics from Data

1305 Newell Simon Hall

Abstract: Despite the incredible capabilities (speed and repeatability) of our hardware today, many robot manipulators are deliberately programmed to avoid dynamics – moving slow enough so they can adhere to quasi-static assumptions of the world. In contrast, people frequently (and subconsciously) make use of dynamic phenomena to manipulate everyday objects – from unfurling blankets, to [...]

VASC Seminar
Yong Jae Lee
Associate Professor
Department of Computer Sciences , University of Wisconsin-Madison

Large Multimodal (Vision-Language) Models for Image Generation and Understanding

Newell-Simon Hall 3305

Abstract: Large Language Models and Large Vision Models, also known as Foundation Models, have led to unprecedented advances in language understanding, visual understanding, and AI. In particular, many computer vision problems including image classification, object detection, and image generation have benefited from the capabilities of such models trained on internet-scale text and visual data. In [...]

Faculty Events

RI Faculty Business Meeting

Newell-Simon Hall 4305

Meeting for RI Faculty. Discussions include various department topics, policies, and procedures. Generally meets weekly.

RI Seminar
Fei Miao
Associate Professor
Department of Computer Science & Engineering, University of Connecticut

Learning and Control for Safety, Efficiency, and Resiliency of Embodied AI

1305 Newell Simon Hall

Abstract: The rapid evolution of ubiquitous sensing, communication, and computation technologies has revolutionized of cyber-physical systems (CPS) across virous domains like robotics, smart grids, aerospace, and smart cities. Integrating learning into dynamic systems control presents significant Embodied AI opportunities. However, current decision-making frameworks lack comprehensive understanding of the tridirectional relationship among communication, learning and control, [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Generalizable Dexterity with Reinforcement Learning

GHC 4405

Abstract: Dexterity, the ability to perform complex interactions with the physical world, is at the core of robotics. However, existing research in robot manipulation has been focused on tasks that involve limited dexterity, such as pick-and-place. The motor skills of the robots are often quasi-static, have a predefined or limited sequence of contact events, and [...]

VASC Seminar
Mohamed Elhoseiny
Assistant Professor
Computer Science, KAUST

Imaginative Vision Language Models: Towards human-level imaginative AI skills transforming species discovery, content creation, self-driving cars, and emotional health

3305 Newell-Simon Hall

Abstract:   Most existing AI learning methods can be categorized into supervised, semi-supervised, and unsupervised methods. These approaches rely on defining empirical risks or losses on the provided labeled and/or unlabeled data. Beyond extracting learning signals from labeled/unlabeled training data, we will reflect in this talk on a class of methods that can learn beyond the vocabulary [...]

VASC Seminar
Kenneth Marino
Research Scientist
Google DeepMind

World Knowledge in the Time of Large Models

Newell-Simon Hall 3305

Abstract:  This talk will discuss the massive shift that has come about in the vision and ML community as a result of the large pre-trained language and language and vision models such as Flamingo, GPT-4, and other models. We begin by looking at the work on knowledge-based systems in CV and robotics before the large model [...]

RI Seminar
Marc Deisenroth
DeepMind Chair of Machine Learning and Artificial Intelligence
University College London

Data-Efficient Learning for Robotics and Reinforcement Learning

1305 Newell Simon Hall

Abstract: Data efficiency, i.e., learning from small datasets, is of practical importance in many real-world applications and decision-making systems. Data efficiency can be achieved in multiple ways, such as probabilistic modeling, where models and predictions are equipped with meaningful uncertainty estimates, transfer learning, or the incorporation of valuable prior knowledge. In this talk, I will [...]

Faculty Events

RI Faculty Business Meeting

Newell-Simon Hall 4305

Meeting for RI Faculty. Discussions include various department topics, policies, and procedures. Generally meets weekly.

VASC Seminar
Shunsuke Saito
Research Scientist
Meta Reality Labs Research

Digital Human Modeling with Light

Newell-Simon Hall 3305

Abstract: Leveraging light in various ways, we can observe and model physical phenomena or states which may not be possible to observe otherwise. In this talk, I will introduce our recent exploration on digital human modeling with different types of light. First, I will present our recent work on the modeling of relightable human heads, [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Preference Based Optimization of Multi-Objective Robot Performance

NSH 4305

Abstract: Robotic systems often require that tradeoffs be made--for example, between performance and robustness, power and longevity, or efficiency and safety. While roboticists can design cost functions with hand-picked weights for different metrics, it is not always a straightforward task, particularly when some aspects of performance are not easily quantified. This can occur especially when [...]

VASC Seminar
Jonathon Luiten
Postdoctoral Fellow
RWTH Aachen and Carnegie Mellon University

Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis

Newell-Simon Hall 3305

Abstract: We present a method that simultaneously addresses the tasks of dynamic scene novel-view synthesis and six degree-of-freedom (6-DOF) tracking of all dense scene elements. We follow an analysis-by-synthesis framework, inspired by recent work that models scenes as a collection of 3D Gaussians which are optimized to reconstruct input images via differentiable rendering. To model [...]

Faculty Events

RI Faculty Business Meeting

Newell-Simon Hall 4305

Meeting for RI Faculty. Discussions include various department topics, policies, and procedures. Generally meets weekly.

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Ensuring safety for uncertain high-dimensional robotic systems

GHC 8102

Abstract: Two major obstacles for safe control and planning are (1) scaling to high-dimensional systems and (2) handling uncertain systems. This is problematic because such systems are ubiquitous in practice: e.g. drones with unknown drag, manipulators carrying unknown packages. In this proposal, we aim to address both challenges. At the control level, we have synthesized [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Trustworthy Learning using Uncertain Interpretation of Data

GHC 8102

Abstract: Non-parametric models are popular in real-world applications of machine learning. However, many modern ML methods that ensure that models are pragmatic, safe, robust, fair, and otherwise trustworthy in increasingly critical applications, assume parametric, differentiable models. We show that, by interpreting data as locally uncertain, we can achieve many of these without being limited to [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Allocation, Planning, and Control in Off-road Automated Convoy Operations

GHC 4405

Abstract: The lack of structure in off-road terrains makes off-road operations of automated platforms difficult. The difficulty arises from uncertainty in the optimality and safety of the actions (e.g., planning and control) taken by the automated platform. When multiple automated platforms are required to act in a coordinated manner (e.g., a convoy) in complex cluttered [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Robot Learning for Assistive Dressing

NSH 4305

Abstract: Robot-assisted dressing could benefit the lives of many people such as older adults and individuals with disabilities. In this talk, I will present two pieces of work that use robot learning for this assistive task. In the first half of the talk, I will present our work on developing a robot-assisted dressing system that [...]

Faculty Events
Senior Systems Scientist
Robotics Institute,
Carnegie Mellon University

RI Faculty Meeting: Multi-Robot Field Autonomy: A 5 Year Perspective

Newell-Simon Hall 4305

LIVE DEMO! Come see, hear and witness progress made in developing a heterogeneous (wheeled, legged, etc.) team of field deployable mobile robots.  Details will be shared on the history of development of multi-robot autonomy at CMU throughout the previous DARPA Subterranean Challenge, DARPA RACER program, and current ARL projects.  There will be an ongoing live and interactive [...]

Faculty Events

RI Faculty Business Meeting

Newell-Simon Hall 4305

Meeting for RI Faculty. Discussions include various department topics, policies, and procedures. Generally meets weekly.

RI Seminar
Dr. Robert Ambrose
J. Mike Walker '66 Chair Professor
Mechanical Engineering, Texas A&M University

Robots at the Johnson Space Center and Future Plans

1305 Newell Simon Hall

Abstract: The seminar will review a series of robotic systems built at the Johnson Space Center over the last 20 years. These will include wearable robots (exoskeletons, powered gloves and jetpacks), manipulation systems (ISS cranes down to human scale) and lunar mobility systems (human surface mobility and robotic rovers). As all robotics presentations should, this [...]

VASC Seminar
Arun Ross
Professor
Michigan State University

Biometrics in a Deep Learning World

Newell-Simon Hall 3305

Abstract: Biometrics is the science of recognizing individuals based on their physical and behavioral attributes such as fingerprints, face, iris, voice and gait. The past decade has witnessed tremendous progress in this field, including the deployment of biometric solutions in diverse applications such as border security, national ID cards, amusement parks, access control, and smartphones. [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Towards Robotic Tree Manipulation: Leveraging Graph Representations

GHC 4405

Abstract: There is growing interest in automating agricultural tasks that require intricate and precise interaction with specialty crops, such as trees and vines. However, developing robotic solutions for crop manipulation remains a difficult challenge due to complexities involved in modeling their deformable behavior. In this study, we present a framework for learning the deformation behavior [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Tracking Any”Thing” in Videos

NSH 3001

Abstract: Being able to track anything is one of the fundamental steps to parse and understand a video. In this talk, I will present two pieces of work that tackle this problem at different spatial granularities. In the first half of the talk, I will discuss tracking any video pixel or particle through time in [...]

MSR Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Exploring Diverse Interaction Types for Human in the Loop Robot Learning

NSH 4305

Abstract: Teaching sessions between humans and robots will need to be maximally informative for optimal robot learning and to ease the human’s teaching burden. However, the bulk of prior work considers one or two modalities through which a human can convey information to a robot—namely, kinesthetic demonstrations and preference queries. Moreover, people will teach robots [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Learning Generalizable Robot Skills for Dynamic and Interactive Tasks

GHC 4405

Abstract: Enabling robots to perform complex dynamic tasks such as picking up an object in one sweeping motion or pushing off a wall to quickly turn a corner is a challenging problem. The dynamic interactions implicit in these tasks are critical for successful task execution. Furthermore, given the interactive nature of such tasks, safety, in [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Customizing Large-scale Text-to-Image Models

NSH 4305

Abstract: Advancements in large-scale generative models represent a watershed moment. These models can generate a wide variety of objects and scenes with different styles and compositions. However, these models are trained on a fixed snapshot of available data and often contain copyrighted or private images. This assumption makes them lacking in two aspects – (a) [...]

MSR Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Building Robot Hands and Teaching Dexterity

NSH 4305

Abstract: Our shared dream is to have robot humanoids with hands complete similar tasks that humans do. While there are a few robot hands available today, the popular opinion is that they are difficult to use, expensive, and hard to obtain which precludes their ubiquitous usage. We argue that this is not an inherent problem [...]

VASC Seminar
Andrea Tagliasacchi
Associate Professor
Simon Fraser University

Neural World Models

Newell-Simon Hall 4305

Abstract: Computer vision researchers have pushed the limits of performance in perception tasks involving natural images to near saturation. With self-supervised inference driven by recent advancements in generative modeling, it can be debated that the era of large image models is coming to a close, ushering in an era focused on video. However, it's worth [...]