MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Scaling up Robot Skill Learning with Generative Simulation

Newell-Simon Hall 4305

Abstract:  Generalist robots need to learn a wide variety of skills to perform diverse tasks across multiple environments. Current robot training pipelines rely on humans to either provide kinesthetic demonstrations or program simulation environments with manually-designed reward functions for reinforcement learning. Such human involvement is an important bottleneck towards scaling up robot learning across diverse [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Simulation as a Tool for Conspicuity Measurement

1305 Newell Simon Hall

Abstract:  The use of unmanned aerial vehicles (UAVs) for time critical tasks is becoming increasingly popular. Operators are expected to use information from these swarms to make real-time and informed decisions. Consequently, detecting and recognizing targets from video is extremely pivotal to the success of these systems. At greater altitudes or with more vehicles, this [...]

MSR Thesis Defense
Research Associate II
Robotics Institute,
Carnegie Mellon University

VP4D: View Planning for 3D and 4D Scene Understanding

1305 Newell Simon Hall

Abstract: View planning plays a critical role by gathering views that optimize scene reconstruction. Such reconstruction has played an important part in virtual production and computer animation, where a 3D map of the film set and motion capture of actors lead to an immersive experience. Current methods use uncertainty estimation in neural rendering of view [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Unlocking Generalization for Robotics via Modularity and Scale

GHC 4405

Abstract: How can we build generalist robot systems? Looking at fields such as vision and language, the common theme has been large scale end-to-end learning with massive, curated datasets. In robotics, on the other hand, scale alone may not be enough due to the significant multimodality of robotics tasks, lack of easily accessible data and [...]

MSR Thesis Defense
MSR Student / Research Associate II
Robotics Institute,
Carnegie Mellon University

Automating Annotation Pipelines by leveraging Multi-Modal Data

Rashid Auditorium - 4401 Gates and Hillman Centers

Abstract: The era of vision-language models (VLMs) trained on large web-scale datasets challenges conventional formulations of “open-world" perception. In this work, we revisit the task of few-shot object detection (FSOD) in the context of recent foundational VLMs. First, we point out that zero-shot VLMs such as GroundingDINO significantly outperform state-of-the-art few-shot detectors (48 vs. 33 AP) [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Leveraging Affordances for Accelerating Online RL

3305 Newell-Simon Hall

Abstract: The inability to explore environments efficiently makes online RL sample-inefficient. Most existing works tackle this problem in a setting devoid of prior information. However, additional affordances may often be cheaply available at the time of training. These affordances include small quantities of demo data, simulators that can reset to arbitrary states and domain specific [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Dynamic Route Guidance in Vehicle Networks by Simulating Future Traffic Patterns

NSH 1305

Abstract: Roadway congestion leads to wasted time and money and environmental damage. One possible solution is adding more roadway capacity, but this can be impractical especially in urban environments and still may not make up for a poorly-calibrated traffic signal schedule. As such, it is becoming increasingly important to use existing road networks more efficiently. [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Safe, Robust and Adaptive Model Learning for Agile Robots: Autonomous Racing

1305 Newell Simon Hall

Abstract: In recent years there has been a rapid development in agile robots capable of operating at their limits in dynamic environments. Autonomous racing and recent developments in it also spurred by competitions such as the Indy Autonomous Challenge, A2RL, and F1Tenth have shown how modern autonomous control algorithms are capable of operating racecars at [...]

MSR Thesis Defense
MSR Alumnus
Robotics Institute,
Carnegie Mellon University

Improving Lego Assembly with Vibro-Tactile Feedback

Newell Simon Hall 4119

Abstract: Robotic manipulation is an important area of research to improve the level of efficiency and autonomy in manufacturing processes. Due to the high precision and repeatability of industrial robot arms, robotic manufacturing tasks are dominated by simple pick, place, and peg insertion actions performed in a highly structured environment. Lego blocks are an excellent [...]

Field Robotics Center Seminar
Christopher Clark
Robots Crossing Boundaries
Harvey Mudd College

Robots Crossing Boundaries

CIC CIC Buuilding Conference Room 1, LL Level

Abstract: Over the last 50 years, autonomous robots have made the leap from being novel research contributions in university labs to becoming the fundamental technology upon which companies are built. While they traditionally have belonged to the engineering and computer science disciplines, robots have now crossed into other areas of study and research - making impacts in oceanography, geology, archaeology, biomechanics and biology. [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

DeltaWalker: A Soft, Linearly Actuated Delta Quadruped Robot

Newell-Simon Hall 4305

Abstract: Quadruped robots offer a versatile solution for navigating complex terrain, making them valuable for applications such as industrial automation or search and rescue. Although quadrupeds are more complex than bipeds, they are easier to balance and control and require fewer joints to actuate compared to hexapods. Traditional quadruped designs, however, often feature complex leg [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Propagative Distance Optimization for Constrained Inverse Kinematics

GHC 6501

Abstract: This work investigates a constrained inverse kinematic (IK) problem that seeks a feasible configuration of an articulated robot under various constraints such as joint limits and obstacle collision avoidance. Due to the high-dimensionality and complex constraints, this problem is often solved numerically via iterative local optimization. Classic local optimization methods take joint angles as [...]

MSR Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Advancing Legged Robot Agility: from Video Imitation to GPU Acceleration

Newell-Simon Hall 4305

Abstract: Achieving human and animal-level agility has been a long-standing goal in robotics research. Recent advancements in numerical optimization and machine learning have pushed legged systems to greater capabilities than ever before, enabling black flips, parkour, and manipulation of heavy objects. Despite these exciting developments, this thesis identifies two key limitations of current legged robot [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Model Predictive Control on Resource-Constrained Robots

3305 Newell-Simon Hall

Abstract: Model predictive control (MPC) is a powerful tool for controlling highly dynamic robotic systems subject to complex constraints. However, it is computationally expensive and often requires a large memory footprint. Larger robotic systems are capable of carrying and powering sophisticated computational hardware onboard. On the other hand, smaller robots typically have faster dynamics that [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Enhancing Bipedal Locomotion With Reaction Wheels

3305 Newell-Simon Hall

Abstract: Legged robot hardware has become more accessible in the last ten years. However, there is still a dearth of low-cost hardware platforms that are open-source and easy to build. With recent developments in accessible manufacturing methods, such as 3D printing, it has become possible to design and manufacture parts without relying on precision machining. [...]

MSR Thesis Defense
MSR Alum
Robotics Institute,
Carnegie Mellon University

Building Micron: The Next Handheld Manipulator for Microsurgery

3305 Newell-Simon Hall

Abstract: Robotic assistance is used today in a variety of surgeries as a means of precise, dexterous, and minimally-invasive manipulation. However, practical use in microsurgical environments such as vitreoretinal surgery remains a challenge for the most common mechanically-grounded robotic platforms. Microsurgery requires micron-level accuracy and the ability to manipulate with interaction forces in millinewtons. Vitreoretinal [...]

MSR Thesis Defense
Engineer II
Robotics Institute,
Carnegie Mellon University

Towards Estimation, Modeling, and Control of Mixed Material Flows on Variable-Speed Conveyor Belt Systems with Applications in Recycling

Newell-Simon Hall 4305

Abstract: Whether it is in sorting defects from grain in an agricultural setting, ore from tailings in a mine, or letters in a postal system, the sorting of bulk material has long been a crucial aspect of human industry.  Today, in the face of dwindling natural resource deposits and accelerating climate change, a particularly important [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Expressive Attentional Communication Learning using Graph Neural Networks

Newell-Simon Hall 4305

Abstract: Multi-agent reinforcement learning presents unique hurdles such as the non-stationary problem beyond single-agent reinforcement learning that makes learning effective decentralized cooperative policies using an agent's local state extremely challenging. Effective communication to share information and coordinate is vital for agents to work together and solve cooperative tasks, as the ubiquitous evidence of communication in [...]

MSR Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Estimating Object Importance and Modeling Driver’s Situational Awareness for Intelligent Driving

3305 Newell-Simon Hall

Abstract: The ability to identify important objects in a complex and dynamic driving environment can help assistive driving systems alert drivers. These assistance systems also require a model of the drivers' situational awareness (SA) (what aspects of the scene they are already aware of) to avoid unnecessary alerts. This thesis builds towards such intelligent driving [...]

Faculty Events
Research Professor / Head of Faculty Mentoring
Robotics Institute,
Carnegie Mellon University

AI for Human Mobility

Newell-Simon Hall 4305

Abstract This talk will describe a series of AI and robotics projects aimed at helping people independently move through cities and buildings. Projects include a deployed personalized transit information app, guide robots for people who are blind, and an integrated AI system that assists blind users with guidance and exploration. Specific findings will be presented [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Learning for Perception and Strategy: Adaptive Omnidirectional Stereo Vision and Tactical Reinforcement Learning

Newell-Simon Hall 4305

Abstract: Multi-view stereo omnidirectional distance estimation usually needs to build a cost volume with many hypothetical distance candidates. The cost volume building process is often computationally heavy considering the limited resources a mobile robot has. We propose a new geometry-informed way of distance candidates selection method which enables the use of a very small number [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Online-Adaptive Self-Supervised Learning with Visual Foundation Models for Autonomous Off-Road Driving

3305 Newell-Simon Hall

Abstract: Autonomous robot navigation in off-road environments currently presents a number of challenges. The lack of structure makes it difficult to handcraft geometry-based heuristics that are robust to the diverse set of scenarios the robot might encounter. Many of the learned methods that work well in urban scenarios require massive amounts of hand-labeled data, but [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Multimodal Representations for Adaptable Robot Policies in Human-Inhabited Spaces

NSH 4305

Abstract:  Human beings sense and express themselves through multiple modalities. To capture multimodal ways of human communication, I want to build adaptable robot policies that infer task pragmatics from video and language prompts, reason about sounds and other sensors, take actions, and learn mannerisms of interacting with people and objects. Existing solutions for robot policies [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Interleaving Discrete Search and Continuous Optimization for Kinodynamic Motion Planning

NSH 4305

Abstract: Motion planning for dynamically complex robotic tasks requires explicit reasoning within constraints on velocity, acceleration, force/torque, and kinematics such as avoiding obstacles. To meet these constraints, planning algorithms must simultaneously make high-level discrete decisions and low-level continuous decisions. For example, pushing a heavy object involves making discrete decisions about contact locations and continuous decisions [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Goal-Expressive Movement for Social Navigation: Where and When to Behave Legibly

NSH 3305

Abstract: Robots often need to communicate their navigation goals to assist observers in anticipating the robot's future actions. Enabling observers to infer where a robot is going from its movements is particularly important as robots begin to share workplaces, sidewalks, and social spaces with humans. We can use legible motion, or movements that use intentional [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Eye Gaze for Intelligent Driving

NSH 4305

Abstract:  Intelligent vehicles have been proposed as one path to increasing traffic safety and reducing on-road crashes. Driving “intelligence” today takes many forms, ranging from simple blind spot occupancy or forward collision warnings to distance-aware cruise and all the way to full driving autonomy in certain situations. Primarily, these methods are outward-facing and operate on [...]

Faculty Events
Research Professor
Robotics Institute,
Carnegie Mellon University

AI-CARING

Newell-Simon Hall 4305

AI-CARING is an NSF-sponsored institute, led by Georgia Tech, whose mission is to investigate, develop and evaluate AI technologies to help older adults live independently.  The Institute focuses on providing reminders to the older adults and alerting caregivers when necessary, assisting older adults with tasks such as meal preparation, motivating them to exercise, providing conversational [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Learning to Perceive and Predict Everyday Interactions

NSH 1305

Abstract:  This thesis aims to build computer systems to understand everyday hand-object interactions in the physical world – both perceiving ongoing interactions in 3D space and predicting possible interactions. This ability is crucial for applications such as virtual reality, robotic manipulations, and augmented reality. The problem is inherently ill-posed due to the challenges of one-to-many [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Sensorized Soft Material Systems with Integrated Electronics and Computing

NSH 1305

Abstract: The integration of soft and multifunctional materials in emerging technologies is becoming more widespread due to their ability to enhance or improve functionality in ways not possible using typical rigid alternatives. This trend is evident in various fields. For example, wearable technologies are increasingly designed using soft materials to improve modulus compatibility with biological [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Deep Learning for Tactile Sensing: Development to Deployment

NSH 1305

Abstract: The role of sensing is widely acknowledged for robots interacting with the physical environment. However, few contemporary sensors have gained widespread use among roboticists. This thesis proposes a framework for incorporating sensors into a robot learning paradigm, from development to deployment, through the lens of ReSkin -- a versatile and scalable magnetic tactile sensor. [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Learning and Translating Temporal Abstractions of Behaviour across Humans and Robots

NSH 4305

Abstract: Humans are remarkably adept at learning to perform tasks by imitating other people demonstrating these tasks. Key to this is our ability to reason abstractly about the high-level strategy of the task at hand (such as the recipe of cooking a dish) and the behaviours needed to solve this task (such as the behaviour [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Towards Underwater 3D Visual Perception

Abstract: With modern robotic technologies, seafloor imageries have become more accessible to both researchers and the public. This thesis leverages deep learning and 3D vision techniques to deliver valuable information from seafloor image observations. Despite the widespread use of deep learning and 3D vision algorithms across various fields, underwater imaging presents unique challenges, such as [...]

PhD Thesis Defense
Extern
Robotics Institute,
Carnegie Mellon University

Assistive value alignment using in-situ naturalistic human behaviors

NSH 3305

Abstract: As collaborative robots are increasingly deployed in personal environments, such as the home, it is critical they take actions to complete tasks consistent with personal preferences. Determining personal preferences for completing household chores, however, is challenging. Many household chores, such as setting a table or loading a dishwasher, are sequential and open-vocabulary, creating a [...]

Special Events

Ice Cream Social

RoboLounge and NSH Patio

Join RISO at the Ice Cream Social robolounge @5-7 Wednesday September 4th Free Entry

Seminar
Carnegie Mellon Graphics Colloquium - Ravi Ramamoorthi
Ronald L. Graham Professor of Computer Science Director
University of California, San Diego

Sampling and Signal-Processing for High-Dimensional Visual Appearance in Computer Graphics and Vision

Rashid Auditorium - 4401 Gates and Hillman Centers

Abstract: Many problems in computer graphics and vision, such as acquiring images of a scene to enable synthesis of novel views from many directions for virtual reality, computing realistic images by integrating lighting from many different incident directions across a range of scene pixels and viewing angles, or acquiring and modeling the appearance of realistic materials [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Teaching Robots to Drive: Scalable Policy Improvement via Human Feedback

NSH 3305

Abstract: A long-standing problem in autonomous driving is grappling with the long-tail of rare scenarios for which little or no data is available. Although learning-based methods scale with data, it is unclear that simply ramping up data collection will eventually make this problem go away. Approaches which rely on simulation or world modeling offer some [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Exploration for Continually Improving Robots

NSH 4305

Abstract: Data-driven learning is a powerful paradigm for enabling robots to learn skills. Current prominent approaches involve collecting large datasets of robot behavior via teleoperation or simulation, to then train policies. For these policies to generalize to diverse tasks and scenes, there is a large burden placed on constructing a rich initial dataset, which is [...]

VASC Seminar
Nataniel Ruiz
Research Scientist
Google

Unlocking Magic: Personalization of Diffusion Models for Novel Applications

3305 Newell-Simon Hall

Abstract: Since the recent advent of text-to-image diffusion models for high-quality realistic image generation, a plethora of creative applications have suddenly become within reach. I will present my work at Google where I have attempted to unlock magical applications by proposing simple techniques that act on these large text-to-image diffusion models. Particularly, a large class of [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Domesticating Soft Robotics Research and Development with Accessible Biomaterials

Abstract:   Current trends in robotics design and engineering are typically focused on high value applications where high performance, precision, and robustness take precedence over cost, accessibility, and environmental impact.  In this paradigm, the capability landscape of robotics is largely shaped by access to capital and the promise of economic return. This thesis explores an alternative [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Understanding and acting in the 4D world

NSH 4305

Abstract: As humans, we are constantly interacting with and observing a three-dimensional dynamic world; where objects around us change state as they move or are moved, and we, ourselves, move for navigation and exploration. Such an interaction between a dynamic environment and a dynamic ego-agent is complex to model as an ego-agent's perception of the [...]

Faculty Events
Assistant Professor
Robotics Institute,
Carnegie Mellon University

Using mechanical intelligence to create adaptable robots

Newell-Simon Hall 4305

Abstract: Currently deployed robots are primarily rigid machines that perform repetitive, controlled tasks in highly constrained or open environments such as factory floors, warehouses, or fields. There is an increasing demand for more adaptable, mobile, and flexible robots that can manipulate or move through unstructured and dynamic environments. My vision is to create robots that [...]

VASC Seminar
Yingsi Qin
PhD Candidate
Carnegie Mellon University

Instant Visual 3D Worlds Through Split-Lohmann Displays

3305 Newell-Simon Hall

Abstract: Split-Lohmann displays provide a novel approach to creating instant visual 3D worlds that support realistic eye accommodation. Unlike commercially available VR headsets that show content at a fixed depth, the proposed display can optically place each pixel region to a different depth, instantly creating eye-tracking-free 3D worlds without using time-multiplexing. This enables real-time streaming [...]

VASC Seminar
Edward Lu
PhD student
ECE Department at CMU

Remote Rendering and 3D Streaming for Resource-Constrained XR Devices

3305 Newell-Simon Hall

Abstract: An overview of the motivation and challenges for remote rendering and real-time 3D video streaming on XR headsets. Bio: Edward is a third year PhD student in the ECE department interested in computer systems for VR/AR devices. Homepage: https://users.ece.cmu.edu/~elu2/   Sponsored in part by:   Meta Reality Labs Pittsburgh      

VASC Seminar
Mosam Dabhi
PhD Student
Carnegie Mellon University

Vectorizing Raster Signals for Spatial Intelligence

3305 Newell-Simon Hall

Abstract: This seminar will focus on how vectorized representations can be generated from raster signals to enhance spatial intelligence. I will discuss the core methodology behind this transformation, with a focus on applications in AR/VR and robotics. The seminar will also briefly cover follow-up work that explores rigging and re-animating objects from casual single videos [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Learning Universal Humanoid Control

GHC 4405

Abstract: Since infancy, humans acquire motor skills, behavioral priors, and objectives by learning from their caregivers. Similarly, as we create humanoids in our own image, we aspire for them to learn from us and develop universal physical and cognitive capabilities that are comparable to, or even surpass, our own. In this thesis, we explore how [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Generative Robotics: Self-Supervised Learning for Human-Robot Collaborative Creation

NSH 4305

Abstract: While Generative AI has shown breakthroughs in recent years in generating new digital contents such as images or 3D models from high-level goal inputs like text, Robotics technologies have not, instead focusing on low-level goal inputs. We propose Generative Robotics, as a new field of robotics which combines the high-level goal input abilities of [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

3D Video Models through Point Tracking, Reconstructing and Forecasting

NSH 3305

Abstract: 3D scene understanding from 2D video is essential for enabling advanced applications such as autonomous driving, robotics, virtual reality, and augmented reality. These fields rely on accurate 3D spatial awareness and dynamic interaction modeling to navigate complex environments, manipulate objects, and provide immersive experiences. Unlike 2D, 3D training data is much less abundant, which [...]

RI Seminar
Nikolai Matni
Assistant Professor
Department of Electrical and Systems Engineering, University of Pennsylvania

What Makes Learning to Control Easy or Hard?

1403 Tepper School Building

Abstract: Designing autonomous systems that are simultaneously high-performing, adaptive, and provably safe remains an open problem. In this talk, we will argue that in order to meet this goal, new theoretical and algorithmic tools are needed that blend the stability, robustness, and safety guarantees of robust control with the flexibility, adaptability, and performance of machine [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Towards a Robot Generalist through In-Context Learning and Abstractions

NSH 1305

Abstract: The goal of this thesis is to discover AI processes that enhance cross-domain and cross-task generalization in intelligent robot agents. Unlike the dominant approach in contemporary robot learning, which pursues generalization primarily through scaling laws (increasing data and model size), we focus on identifying the best abstractions and representations in both perception and policy [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Vision-based Human Motion Modeling and Analysis

NSH 4305

Abstract: Modern computer vision has achieved remarkable success in tasks such as detecting, segmenting, and estimating the pose of humans in images and videos, reaching or even surpassing human-level performance. However, they still face significant challenges in predicting and analyzing future human motion. This thesis explores how vision-based solutions can enhance the fidelity and accuracy [...]

VASC Seminar
Bailey Miller
PhD Candidate
Carnegie Mellon University

Stochastic Graphics Primitives

3305 Newell-Simon Hall

Abstract: For decades computer graphics has successfully leveraged stochasticity to enable both expressive volumetric representations of participating media like clouds and efficient Monte Carlo rendering of large scale, complex scenes. In this talk, we’ll explore how these complementary forms of stochasticity (representational and algorithmic) may be applied more generally across computer graphics and vision. In [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Recent Progress in Graph-Search Methods for Multi-Robot-Arm Motion Planning

NSH 4305

Abstract: An exciting frontier in robotic manipulation is the use of multiple arms at once. However, planning concurrent motions is a challenging task using current methods. A major obstacle is the high-dimensional state space of this planning problem, which renders many traditional motion planning algorithms impractical. This opens the door for alternatives to the common [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Physical Process-Informed Mapping for Robotic Exploration

NSH 4305

Abstract: Mobile robots used for information gathering tasks rely on dense, predictive mapping of large-scale regions to determine where to take measurements. Current approaches to mapping commonly rely on Gaussian process regression to spatially correlate data, extrapolate from sparse samples, and estimate uncertainty. However, these approaches do not incorporate meaningful information about physical processes that [...]

Faculty Events

RI Faculty Business Meeting

Newell-Simon Hall 4305

Meeting for RI Faculty. Agenda was sent via a calendar invite.

RI Seminar
Robert Katzschmann
Assistant Professor
Institute for Robotics and Intelligent Systems, ETH Zurich

Can Robots Based on Musculoskeletal Designs Better Interact With the World?

1403 Tepper School Building

Abstract: Living robots represent a new frontier in engineering materials for robotic systems, incorporating biological living cells and synthetic materials into their design. These bio-hybrid robots are dynamic and intelligent, potentially harnessing living matter’s capabilities, such as growth, regeneration, morphing, biodegradation, and environmental adaptation. Such attributes position bio-hybrid devices as a transformative force in robotics [...]

RI Seminar
Allison Okamura
Richard W. Weiland Professor of Engineering
Department of Mechanical Engineering, Stanford University

Soft Wearable Haptic Devices for Ubiquitous Communication

1403 Tepper School Building

Abstract: Haptic devices allow touch-based information transfer between humans and intelligent systems, enabling communication in a salient but private manner that frees other sensory channels. For such devices to become ubiquitous, their physical and computational aspects must be intuitive and unobtrusive. The amount of information that can be transmitted through touch is limited in large [...]

VASC Seminar
Noah Snavely
Professor & Research Scientist
Cornell Tech & Google DeepMind

Reconstructing Everything

3305 Newell-Simon Hall

Abstract: The presentation will be about a long-running, perhaps quixotic effort to reconstruct all of the world's structures in 3D from Internet photos, why this is challenging, and why this effort might be useful in the era of generative AI.   Bio: Noah Snavely is a Professor in the Computer Science Department at Cornell University [...]

Field Robotics Center Seminar
Srdjan Acimovic
Assistant Professor
School of Plant and Environmental Sciences, Virginia Tech

Using Robotics, Imaging and AI to Tackle Apple Fruit Production: Crop Harvest and Fire Blight Disease, The Two Major Bottlenecks for U.S. Apple Producers

CIC CIC Buuilding Conference Room 1, LL Level

Abstract Temperate tree fruit production is a significant agricultural sector in the United States, encompassing a variety of fruits like apples, pears, cherries, peaches and plums. The U.S. is the second-largest producer of apples in the world, after China. Annual U.S. production is 10 - 11 billion pounds of apple. However, apple production is complicated [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Moving Lights and Cameras for Better 3D Perception of Indoor Scenes

GHC 6501

Abstract: Decades of research on computer vision have highlighted the importance of active sensing -- where an agent controls the parameters of the sensors to improve perception. Research on active perception in the context of robotic manipulation has demonstrated many novel and robust sensing strategies involving a multitude of sensors like RGB and RGBD cameras [...]

RI Seminar
Assistant Professor
Robotics Institute,
Carnegie Mellon University

Building Generalist Robots with Agility via Learning and Control: Humanoids and Beyond

1403 Tepper School Building

Abstract: Recent breathtaking advances in AI and robotics have brought us closer to building general-purpose robots in the real world, e.g., humanoids capable of performing a wide range of human tasks in complex environments. Two key challenges in realizing such general-purpose robots are: (1) achieving "breadth" in task/environment diversity, i.e., the generalist aspect, and (2) [...]

VASC Seminar
Christian Richardt
Research Scientist Lead
Meta Reality Labs Research

High-Fidelity Neural Radiance Fields

3305 Newell-Simon Hall

Abstract: I will present three recent projects that focus on high-fidelity neural radiance fields for walkable VR spaces: VR-NeRF (SIGGRAPH Asia 2023) is an end-to-end system for the high-fidelity capture, model reconstruction, and real-time rendering of walkable spaces in virtual reality using neural radiance fields. To this end, we designed and built a custom multi-camera rig to [...]