PhD Speaking Qualifier
Principal Research Programmer / Analyst
Robotics Institute,
Carnegie Mellon University

Terrain Perception using Structured Light for Micro-Rovers

Abstract: With continuing advancement in technology, the future of planetary exploration is likely to be dominated by robotic missions. Yet rovers capable of science investigations are slow and bulky with very limited computing which prohibits demonstrating full autonomy. These rovers are also risk averse due to their huge mission cost. However there is a new [...]

VASC Seminar
Ricardo Martin-Brualla
Researcher
Google

Photorealistic Reconstruction of Landmarks and People using Implicit Scene Representation

Abstract: Reconstructing scenes to synthesize novel views is a long standing problem in Computer Vision and Graphics. Recently, implicit scene representations have shown novel view synthesis results of unprecedented quality, like the ones of Neural Radiance Fields (NeRF), which use the weights of a multi-layer perceptron to model the volumetric density and color of a [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Bayesian Models for Science-Driven Robotic Exploration

Abstract: Planetary rovers have traversed many kilometers and made major scientific discoveries. However, they spend a considerable amount of time awaiting instructions from ground operators. The reason is that they are designed for automated science data collection, not for autonomous exploration. The exploration of more distant worlds with stronger communication constraints will require a new [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Expressive Real-time Intersection Scheduling: New Methods for Adaptive Traffic Signal Control

Abstract: Traffic congestion is a widespread problem throughout global metropolitan areas. In this thesis, we consider methods to optimize the performance of traffic signals to reduce congestion. We begin by presenting Expressive Real-time Intersection Scheduling (ERIS), a schedule-driven intersection control strategy that runs independently on each intersection in a traffic network. For each intersection, ERIS [...]

PhD Thesis Proposal
Project Scientist
Robotics Institute,
Carnegie Mellon University

Verification and Accreditation of Artificial Intelligence

Abstract: This work involves formally verifying a trained model's adherence to important design specifications for the purpose of model accreditation. Accreditation of a trained model requires enumeration of the explicit operational conditions under which the model is certified to meet all necessary specifications. By verifying model adherence to specifications set by developers, we increase the [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Direct-drive Hands: Making Robot Hands Transparent and Reactive to Contacts

Abstract: Industrial manipulators and end-effectors are a vital driver of the automation revolution. These robot hands, designed to reject disturbances with stiffness and strength, are inferior to their human counterparts. Human hands are dexterous and nimble effectors capable of a variety of interactions with the environment. Through this thesis we wish to answer a question: [...]

VASC Seminar
Guoliang Kang
Postdoctoral Research Associate
LTI, CMU

Towards Discriminative and Domain-Invariant Feature Learning

Abstract: Deep neural networks have achieved great success in various visual applications, when trained with large amounts of labeled in-domain data. However, the networks usually suffer from a heavy performance drop on the data whose distribution is quite different from the training one. Domain adaptation methods aim to deal with such performance gap caused by [...]

VASC Seminar
Zhiqiang Shen
Postdoctoral Researcher
Department of Electrical & Computer Engineering, CMU

Learning Efficient Visual Representation on Model, Data, Label and Beyond

Abstract: Efficient deep learning is a broad concept that we aim to learn compressed deep models and develop training algorithms to improve the efficiency of model representations, data and label utilization, etc. In recent years, deep neural networks have been recognized as one of the most effective techniques for many learning tasks, also, in the [...]

VASC Seminar
Yannis Kalantidis
Research Scientist
NAVER LABS Europe

Self-supervised Learning and Generalization

Abstract: Contrastive self-supervised learning is a highly effective way of learning representations that are useful for, i.e. generalise, to a wide range of downstream vision tasks and datasets. In the first part of the talk, I will present MoCHi, our recently published contrastive self-supervised learning approach (NeurIPS 2020) that is able to learn transferable representations [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Teleoperation via Intuition: Safe and Intent Oriented Navigation

Abstract: This thesis aims to enable seamless teleoperation of a mobile robot by a human operator, such that the robot navigates in unstructured environments following the operator’s intent intuitively, safely, and efficiently. The roles of the human and robot are disproportionate in traditional teleoperation: The human is responsible for most of the autonomy of the [...]

RI Seminar
Mac Schwager
Assistant Professor
Department of Aeronautics & Astronautics, Stanford University

Enabling Robots to Cooperate & Compete: Distributed Optimization & Game Theoretic Methods for Multiple Interacting Robots

Abstract: For robots to effectively operate in our world, they must master the skills of dynamic interaction.  Autonomous cars must safely negotiate their trajectories with other vehicles and pedestrians as they drive to their destinations.  UAVs must avoid collisions with other aircraft, as well as dynamic obstacles on the ground.  Disaster response robots must coordinate [...]

VASC Seminar
Bharath Hariharan
Assistant Professor
Cornell University

Learning to see from few labels

Abstract: Computer vision systems today exhibit a rich and accurate understanding of the visual world, but increasingly rely on learning on large labeled datasets to do so. This reliance on large labeled datasets is a problem especially when one considers difficult perception tasks, or novel domains where annotations might require effort or expertise. We thus [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Towards the Automated Design of Neural Networks

Abstract: Neural architecture search (NAS) is recently proposed to automate the process of designing network architectures. Instead of manually designing network architectures, NAS automatically finds the optimal architecture in a data-driven way. Despite its impressive progress, NAS is still far from being widely adopted as a common paradigm for architecture design in practice. This thesis [...]

RI Seminar
Alberto Rodriguez
Associate Professor
Mechanical Engineering, MIT

The Role of Manipulation Primitives in Building Dexterous Robotic Systems

Abstract: I will start this talk by illustrating four different perspectives that we as a community have embraced to study robotic manipulation: 1) controlling a simplified model of the mechanics of interaction with an object; 2) using haptic feedback such as force or tactile to control the interaction with an environment; 3) planning sequences or [...]

VASC Seminar
Adriana Romero-Soriano
Research Scientist
Facebook AI Research

Seeing the unseen: inferring unobserved information from multi-modal data

Abstract: As humans we can never fully observe the world around us and yet we are able to build remarkably useful models of it from our limited sensory data. Machine learning problems are often required to operate in a similar setup, that is the one of inferring unobserved information from the observed one. Partial observations [...]

PhD Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Analysis of Deadlock in Multirobot Systems

Abstract: Collision avoidance for multirobot systems is a well-studied problem. Recently, control barrier functions (CBFs) have been proposed for synthesizing controllers that guarantee safety while simultaneously encouraging goal stabilization for multiple robots. However, it has been noted that reactive control synthesis methods (such as CBFs) are prone to deadlock, an equilibrium of system dynamics that [...]

RI Seminar
Assistant Professor
Robotics Institute,
Carnegie Mellon University

Design and Analysis of Open-Source Educational Haptic Devices

Abstract: The sense of touch (haptics) is an active perceptual system used from our earliest days to discover the world around us. However, formal education is not designed to take advantage of this sensory modality. As a result, very little is known about the effects of using haptics in K-12 and higher education or the [...]

VASC Seminar
Sanja Fidler
Associate Professor
Department of Computer Science, University of Toronto

Towards AI for 3D Content Creation

Abstract: 3D content is key in several domains such as architecture, film, gaming, and robotics. However, creating 3D content can be very time consuming -- the artists need to sculpt high quality 3d assets, compose them into large worlds, and bring these worlds to life by writing behaviour models that "drives" the characters around in [...]

RI Seminar
Gustav Eje Henter
Assistant Professor in Intelligent Systems with spec. in Machine Learning
School of Electrical Engineering & Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden

Move over, MSE! – New probabilistic models of motion

Abstract: Data-driven character animation holds great promise for games, film, virtual avatars and social robots. A "virtual AI actor" that moves in response to intuitive, high-level input could turn 3D animators into directors, instead of requiring them to laboriously pose the character for each frame of animation, as is the case today. However, the high [...]

VASC Seminar
Farah Deeba
PhD Candidate
Electrical and Computer Engineering Department , University of British Columbia

Understanding the Placenta: Towards an Objective Pregnancy Screening

Abstract: My research focusses on the development of a pregnancy screening tool, that will be: (i) system and user-independent; and (ii) provides a quantifi able measure of placental health. With this end, I am working towards the design of a multiparametric quantitative ultrasound (QUS) based placental tissue characterization method. The method would potentially identify the [...]

RI Seminar
Heni Ben Amor
Assistant Professor
Interactive Robotics Laboratory, Arizona State University

Human-Robot Interactive Collaboration & Communication

Abstract: Autonomous and anthropomorphic robots are poised to play a critical role in manufacturing, healthcare and the services industry in the near future. However, for this vision to become a reality, robots need to efficiently communicate and interact with their human partners. Rather than traditional remote controls and programming languages, adaptive and transparent techniques for [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Interleaving Graph Search and Trajectory Optimization for Aggressive Quadrotor Flight

Abstract: Quadrotors can achieve aggressive flight by tracking complex maneuvers and rapidly changing directions. Planning for aggressive flight with trajectory optimization could be incredibly fast, even in higher dimensions, and can account for dynamics of the quadrotor, however, only provides a locally optimal solution. On the other hand, planning with discrete graph search can handle [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

See, Hear, Explore: Curiosity via Audio-Visual Association

Abstract: Exploration is one of the core challenges in reinforcement learning. A common formulation of curiosity-driven exploration uses the difference between the real future and the future predicted by a learned model. However, predicting the future is an inherently difficult task which can be ill-posed in the face of stochasticity. In this work, we introduce [...]

RI Seminar
Principal Systems Scientist / Director, NREC
Robotics Institute,
Carnegie Mellon University

Robots “R” Us: 25 years of Robotics Technology Development and Commercialization at NREC

Abstract: Since its founding in 1979, the Robotics Institute (RI) at Carnegie Mellon University has been leading the world in robotics research and education. In the mid 1990s, RI created NREC as the applied R&D center within the Institute with a specific mission to apply robotics technology in an impactful way on real-world applications. In this talk, I will go over [...]

VASC Seminar
Jiachen Li
Ph.D. Candidate
University of California, Berkeley

Relational Reasoning for Multi-Agent Systems

Abstract: Multi-agent interacting systems are prevalent in the world, from purely physical systems to complicated social dynamics systems. The interactions between entities / components can give rise to very complex behavior patterns at the level of both individuals and the whole system. In many real-world multi-agent interacting systems (e.g., traffic participants, mobile robots, sports players), [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Dynamical Model Learning and Inversion for Aggressive Quadrotor Flight

Quadrotor applications have seen a surge recently and many tasks require precise and accurate controls. Flying fast is critical in many applications and the limited onboard power source makes completing tasks quickly even more important. Staying on a desired course while traveling at high speeds and high accelerations is difficult due to complex and stochastic [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

MonoClothCap: Towards Temporally Coherent Clothing Capture from Monocular RGB Video

Abstract: We present a method to capture temporally coherent dynamic clothing deformation from a monocular RGB video input. In contrast to the existing literature, our method does not require a pre-scanned personalized mesh template, and thus can be applied to in-the-wild videos. To constrain the output to a valid deformation space, we build statistical deformation [...]

RI Seminar
Rohan Paul
Assistant Professor
Department of Computer Science & Engineering, Indian Institute of Technology Delhi

Towards an Intelligence Architecture for Human-Robot Teaming

Abstract: Advances in autonomy are enabling intelligent robotic systems to enter human-centric environments like factories, homes and workplaces. To be effective as a teammate, we expect robots to accomplish more than performing simplistic repetitive tasks; they must perceive, reason, perform semantic tasks in a human-like way. A robot's ability to act intelligently is fundamentally tied [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Robust Manipulation with Active Compliance

Abstract: Human manipulation skills are filled with creative use of physical contacts to move the object about the hand and in the environment. However, it is difficult for robot manipulators to enjoy this dexterity since contacts may cause the manipulation task to fail by introducing huge forces or unexpected change of constraints, especially when modeling [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Open-world Object Detection and Tracking

Abstract: Computer vision today excels at recognizing narrow slices of the real world: our models seem to accurately detect objects like cats, cars, or chairs in benchmark datasets. However, deploying models requires that they work in the open world, which includes arbitrary objects in diverse settings. Current methods struggle on both axes: they recognize only [...]

VASC Seminar
Hamed Pirsiavash
Assistant Professor
University of Maryland Baltimore County

Self-supervised learning for visual recognition

Abstract: We are interested in learning visual representations that are discriminative for semantic image understanding tasks such as object classification, detection, and segmentation in images/videos. A common approach to obtain such features is to use supervised learning. However, this requires manual annotation of images, which is costly, ambiguous, and prone to errors. In contrast, self-supervised [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Policy Decomposition : Approximate Optimal Control with Suboptimality Estimates

Abstract: Owing to the curse of dimensionality, numerically computing global policies to optimal control problems for complex dynamical systems quickly becomes intractable. In consequence, a number of approximation methods have been developed. However, none of the current methods can quantify by how much the resulting control underperforms the elusive globally optimal solution. We propose Policy [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Inverse Reinforcement Learning with Explicit Policy Estimates

Abstract: Various methods for solving the inverse reinforcement learning (IRL) problem have been developed independently in machine learning and economics. In particular, the method of Maximum Causal Entropy IRL is based on the perspective of entropy maximization, while related advances in the field of economics instead assume the existence of unobserved action shocks to explain [...]

RI Seminar
Assistant Professor
Robotics Institute,
Carnegie Mellon University

GANs for Everyone

Abstract:  The power and promise of deep generative models such as StyleGAN, CycleGAN, and GauGAN lie in their ability to synthesize endless realistic, diverse, and novel content with user controls. Unfortunately, the creation and deployment of these large-scale models demand high-performance computing platforms, large-scale annotated datasets, and sophisticated knowledge of deep learning methods. This makes [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk – Hans Kumar

Title: Multi-Session Periodic SLAM for Legged Robots   Abstract: Methods for state estimation that rely on visual information are challenging on dynamic robots because of rapid changes in the viewing angle of onboard cameras. In this thesis, we show that by leveraging structure in the way that dynamic robots locomote, we can increase the feasibility [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Learning to Compose Hierarchical Object-Centric Controllers for Robotic Manipulation

Abstract: To perform manipulation tasks in the real world, robots need to operate on objects with various shapes, sizes and without access to geometric models. It is often infeasible to train monolithic neural network policies across such large variance in object properties. Towards this generalization challenge, we propose task-axis controllers, which are defined relative to [...]

VASC Seminar
Ronghang Hu
Research Scientist
Facebook Inc.

Reasoning over Text in Images for VQA and Captioning

Abstract: Text in images carries essential information for multimodal reasoning, such as VQA or image captioning. To enable machines to perceive and understand scene text and reason jointly with other modalities, 1) we collect the TextCaps dataset, which requires models to read and reason over text and visual content in the image to generate image [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Eagle Dapeng Zhao

Title: Predicting Human Trajectories by Learning and Matching Patterns Zoom Link: https://cmu.zoom.us/j/93356993095?pwd=Nzd3a09PbG9mVkV5blFVaU5nRk1GQT09 Abstract: As more and more robots are envisioned to cooperate with humans sharing the same space, it is desired for robots to be able to predict others' trajectories to navigate in a safe and self-explanatory way. We propose a Convolutional Neural Network-based approach [...]

RI Seminar
Avik De
Co-founder & CTO
Ghost Robotics

Design and control of insect-scale bees and dog-scale quadrupeds

Abstract: Enhanced robot autonomy---whether it be in the context of extended tether-free flight of a 100mg insect-scale flapping-wing micro aerial vehicle (FWMAV), or long inspection routes for a quadrupedal robot---is hindered by fundamental constraints in power and computation. With this motivation, I will discuss a few projects I have worked on to circumvent these issues in [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Causal Reasoning in Simulation for Structure and Transfer Learning of Robot Manipulation Policies

Abstract: Real-world environments, such as homes, hospitals, and restaurants, often contain many objects that a robot could possibly manipulate. However, for a given manipulation task, only a small number of objects and object properties may actually be relevant. This talk presents CREST (Causal Reasoning for Efficient Structure Transfer), our approach to learn the relevant state [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Grasping Transparent, Specular, and Deformable Objects

Abstract: A large body of research exists on grasping for objects with ideal properties like Lambertian reflectance and rigidity. On the other hand, real-world environments contain many objects for which such properties do not hold, such as transparent, specular, and deformable objects. For such objects, new approaches are required to achieve the same level of [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Auto-generated Manipulation Primitives

Abstract: The central theme in robotic manipulation is that of the robot interacting with the world through physical contact. We tend to describe that physical contact using specific words that capture the nature of the contact and the action, such as grasp, roll, pivot, push, pull, tilt, close, open etc. We refer to these situation-specific [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Learning 3D Registration and Reconstruction from the Visual World

Abstract: Humans learn to develop strong senses for 3D geometry by looking around in the visual world. Through pure visual perception, not only can we recover a mental 3D representation of what we are looking at, but meanwhile we can also recognize where we are looking at the scene from. Finding the 3D scene representation [...]

VASC Seminar
Jhony Kaesemodel Pontes
Research Scientist
Argo AI

Point Cloud Registration with or without Learning

Abstract: I will be presenting two of our recent works on 3D point cloud registration:   A scene flow method for non-rigid registration: I will discuss our current method to recover scene flow from point clouds. Scene flow is the three-dimensional (3D) motion field of a scene, and it provides information about the spatial arrangement [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Development of an Agile and Dexterous Balancing Mobile Manipulator Robot

Abstract: The proposed thesis work focuses on the design and control of a new unique agile and dexterous mobile manipulator, the Carnegie Mellon University (CMU) ballbot. The CMU ballbot is a human-sized dynamically stable mobile robot that balances on a single ball. We present the development and integration of a new pair of seven-degree-of-freedom (7-DOF) [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Shengcao Cao

Title: Efficient Model Performance Estimation via Feature Histories Abstract: An important step in the task of neural network design, such as hyper-parameter optimization (HPO) or neural architecture search (NAS), is the evaluation of a candidate model's performance. Given fixed computational resources, one can either invest more time training each model to obtain more accurate estimates [...]

RI Seminar
Cynthia Sung
Assistant Professor
Mechanical Engineering & Applied Mechanics, University of Pennsylvania

Dynamical Robots via Origami-Inspired Design

Abstract: Origami-inspired engineering produces structures with high strength-to-weight ratios and simultaneously lower manufacturing complexity. This reliable, customizable, cheap fabrication and component assembly technology is ideal for robotics applications in remote, rapid deployment scenarios that require platforms to be quickly produced, reconfigured, and deployed. Unfortunately, most examples of folded robots are appropriate only for small-scale, low-load [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Steven Lee

Title: Learning to Represent and Accurately Arrange Food Items   Abstract: Arrangements of objects are commonplace in a myriad of everyday scenarios, such as decorations at one’s home, displays at museums, and plates of food at restaurants. An efficient personal robot should be able to learn how to robustly recreate an arrangement using only a few [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Amrita Sawhney

Title: Learning to Perceive and Manipulate Diverse Food Materials Through Interaction Abstract: The home kitchen environment presents many challenges for an autonomous cooking robot, such as the deformability of food items, the wide range of material properties of food, and the complex interaction dynamics involved in food manipulation tasks. Material properties are important when interacting [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Haidar Jamal

Zoom

Title: Localization for Lunar Micro-Rovers   Abstract: This talk presents an avionics and localization system that enables a lunar micro-rover to navigate autonomously. This system is important for the latest class of small, low-powered, and fast robots going to the Moon in search of polar ice. The first component of the system is an Extended [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

PoseIt: A Visual-Tactile Dataset of Holding Poses for Grasp Stability Analysis

Abstract: When humans grasp objects in the real world, we often move our arm to hold the object in a different pose where we can use it. In contrast, typical lab settings only study the stability of the grasp immediately after lifting, without any subsequent re-positioning of the arm. However, an object’s stability could vary [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Planning to Minimize Human and Robot Efforts Over Tasks

Abstract: It is not feasible to pre-program robots a priori for every possible task they may encounter in unstructured domains. Upon encountering a task that a robot can't solve, one common strategy is to teach it new skills via demonstrations. However, demonstrating a task can often be more cumbersome than performing the task directly. This [...]

MSR Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Akash Sharma

Title: Incorporating Semantic Structure in SLAM Abstract: For robots to understand the environment they interact with, a combination of geometric information and semantic information is imperative. In this talk, I propose a fast and scalable Simultaneous Localization and Mapping (SLAM) system that represents indoor scenes as a graph of semantic objects. Leveraging the observation that [...]

VASC Seminar
Arsalan Mousavian
Senior Robotics Research Scientist
NVIDIA

Propelling Robot Manipulation of Unknown Objects using Learned Object Centric Models

Abstract: There is a growing interest in using data-driven methods to scale up manipulation capabilities of robots for handling a large variety of objects. Many of these methods are oblivious to the notion of objects and they learn monolithic policies from the whole scene in image space. As a result, they don’t generalize well to [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Yaadhav Raaj MSR Thesis Talk

Title: Exploiting Uncertainty in Triangulation Light Curtains for Object Tracking and Depth Estimation   Abstract: Active sensing through the use of Adaptive Depth Sensors is a nascent field, with potential in areas such as Advanced driver-assistance systems (ADAS). One such class of sensor is the Triangulation Light Curtain, which was developed in the Illumination and Imaging [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Active Vision: Autonomous Aerial Cinematography with Learned Artistic Decision-Making

Abstract: Aerial cinematography is revolutionizing industries that require live and dynamic camera viewpoints such as entertainment, sports, and security. Fundamentally, it is a tool with immense potential to improve human creativity, expressiveness, and sharing of experiences. However, safely piloting a drone while filming a moving target in the presence of obstacles is immensely taxing, often [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Fine-Tuning Offline Reinforcement Learning with Model-Based Policy Optimization

Abstract: In offline reinforcement learning (RL), we attempt to learn a control policy from a fixed dataset of environment interactions. This setting has the potential benefit of allowing us to learn effective policies without needing to collect additional interactive data, which can be expensive or dangerous in real-world systems. However, traditional off-policy RL methods tend [...]

MSR Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Zhipeng Bao

Title: Introducing Generative Models to Facilitate Multi-Task Visual Learning Abstract: Motivated by multi-task learning of shared feature representations, this talk considers a novel problem of learning a shared generative model that can facilitate multi-task learning. We present two systems to utilize generative modeling for other visual tasks. The first system focuses on learning a generative [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Shanshan Jessy Xie

TBA

Title: GPU based perception via search for object pose estimation with RGB data   Abstract: Known object pose estimation is essential for a robot to interact with the real world.  It is the first and fundamental task if the robot wants to manipulate the object.  This problem is particularly challenging when the environment is complicated [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Accelerating Numerical Methods for Optimal Control

Abstract: Many modern control methods, such as model-predictive control, rely heavily on solving optimization problems in real time. In particular, the ability to efficiently solve optimal control problems has enabled many of the recent breakthroughs in achieving highly dynamic behaviors for complex robotic systems. The high computational requirements of these algorithms demand novel algorithms tailor-suited [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Modeling Coupled Human-Robot Motion for Provable Safety

Abstract: Guide robots that help users who are blind or low vision navigate through crowds and complex environments show promise for improving accessibility in public spaces. These robots must provide real-time safety guarantees for the users, which requires accurate modeling of their behavior in the context of closely coupled human-robot motion. This model must also [...]

MSR Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk – Mosam Dabhi

Title: Multi-view NRSfM: Affordable setup for high-fidelity 3D reconstruction   Abstract: Triangulating a point in 3D space should only require two corresponding camera projections. However in practice, expensive multi-view setups -- involving tens sometimes hundreds of cameras -- are required to obtain the high fidelity 3D reconstructions necessary for many modern applications. In this talk, we argue [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Robust Object Representations for Robot Manipulation

Abstract: As robots become more common in our daily lives, they will need to interact with many different environments and countless types of objects. While we, as humans, can easily understand an object after seeing it only once, this task is not trivial for robots. Researchers have, for the most part, been left with two [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Diminished Reality for Close Quarters Robotic Telemanipulation

Abstract: In robot telemanipulation tasks, the robot itself can sometimes occlude a target object from the user's view. We investigate the potential of diminished reality to address this problem. Our method uses an optical see-through head-mounted display to create a diminished reality illusion that the robot is transparent, allowing users to see occluded areas behind [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Visual Representation and Recognition without Human Supervision

Abstract: Visual recognition models have seen great advancements by relying on large-scale, carefully curated datasets with human annotations. Most computer vision models leverage human supervision to either construct strong initial representations (e.g. using the ImageNet dataset) or for modeling the visual concepts relevant for downstream tasks (e.g. MS-COCO for object detection). In this thesis, we [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Learning Compositional Radiance Fields of Dynamic Human Heads

Meeting ID: 942 4671 0665 Passcode: jkhzoom Abstract: Photorealistic rendering of dynamic humans is an important capability for telepresence systems. Recently, neural rendering methods have been developed to create high-fidelity models of humans and objects. Some of these methods do not produce results with high-enough fidelity for driveable human models (Neural Volumes) whereas others have [...]

VASC Seminar
Phillip Isola
Assistant Professor
EECS, MIT

When and Why Does Contrastive Learning Work?

Abstract: Contrastive learning organizes data by pulling together related items and pushing apart everything else. These methods have become very popular but it's still not entirely clear when and why they work. I will share two ideas from our recent work. First, I will argue that contrastive learning is really about learning to forget. Different [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Heuristic Search Based Planning by Minimizing Anticipated Search Efforts

Abstract: Robot planning problems in dynamic environments, such as navigation among pedestrians, driving at high-speed on densely populated roads, and manipulation for collaborative tasks alongside humans, necessitate efficient planning. Bounded-suboptimal heuristic search algorithms are a popular alternative to optimal heuristic search algorithms that compromise solution quality for computation speed. Specifically, these searches aim to find [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Liquid Metal Actuators

Abstract: Bioinspired robotic actuators arise from the advances in soft materials and activation methods to achieve desired performance. Because of their intrinsic compliance, actuators built from soft materials and liquids can achieve elastic resilience and adaptability similar to their biological counterparts. Liquid metals provide great opportunities for creating an artificial muscle that generates forces at [...]

VASC Seminar
Ehsan Adeli
Clinical Assistant Professor
Stanford University

Anticipating the Future: forecasting the dynamics in multiple levels of abstraction

Abstract: A key navigational capability for autonomous agents is to predict the future locations, actions, and behaviors of other agents in the environment. This is particularly crucial for safety in the realm of autonomous vehicles and robots. However, many current approaches to navigation and control assume perfect perception and knowledge of the environment, even though [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Understanding and Mitigating Biases in Evaluation

Abstract: There are many problems in real life that involve collecting and aggregating evaluation from people, such as hiring, peer grading and conference peer review. In this thesis, we focus on three sources of biases that arise in such problems, and propose methods to mitigate them. First, we study human bias, that is, the bias [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Manan Shah

ZOOM Link: https://www.google.com/url?q=https://cmu.zoom.us/j/93845075967?pwd%3DbndGc3NvaUVDVFFTTDZvektrNWJqdz09&sa=D&source=calendar&ust=1623592142330000&usg=AOvVaw1xfNPT5c59CQGKzR2bw5sO   ID: 93845075967 Passcode: 159459 Title: 3D SLAM for Powered Lower Limb Prosthesis Abstract: During locomotion, humans use visual feedback to adjust their leg movement when navigating the environment. This natural behavior is lost, however, for lower-limb amputees, as current control strategies of prosthetic legs do not typically consider environment perception. With [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Dennis Melamed

Title: Learnable Spatio-Temporal Map Embeddings for Deep Inertial Localization Abstract: Pedestrian localization systems often fuse inertial odometry with map information via hand-defined methods to reduce odometry drift, but such methods are sensitive to noise and struggle to generalize across odometry sources. To address the robustness problem in map utilization, we propose a system that forms a [...]

VASC Seminar
Xiaolong Wang
Assistant Professor
UCSD

Learning to Perceive Videos for Embodiment

Abstract: Video understanding has achieved tremendous success in computer vision tasks, such as action recognition, visual tracking, and visual representation learning. Recently, this success has gradually been converted into facilitating robots and embodied agents to interact with the environments. In this talk, I am going to introduce our recent efforts on extracting self-supervisory signals and [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Self-Learning of Structured Visual Representations

Abstract: Most computer vision models in deployment today are not learning. Instead, they are in a "test" mode, where they will behave the same way perpetually, until they are replaced by newer models. This is a problem, because it means the models may perform poorly as soon as their "test" environment becomes different from their [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Resource-Constrained Learning and Inference for Visual Perception

Abstract: Real-world applications usually require computer vision algorithms to meet certain resource constraints. In this talk, I will present evaluation methods and principled solutions for both training and testing. First, I will talk about a formal setting for studying training under the non-asymptotic, resource-constrained regime, i.e., budgeted training. We analyze the following problem: "given a [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Towards Safe and Resilient Autonomy in Multi-Robot Systems

Abstract: Autonomous systems such as robotic systems are envisioned to co-exist with humans in our daily lives, from household service to large-scale warehouse logistics, agricultural monitoring, and smart city. Reliable interactions among robots and humans require provably correct guarantees about safety and performance when designing robot behaviors. While traditional approaches for safety and performance analysis [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Provably Constant-Time Motion Planning

Abstract: In many robotic applications, including logistics and manufacturing, robots often operate in semi-structured environments and perform highly repetitive manipulation tasks. Additionally, large parts of these environments are static most of the time. Fast and reliable motion planning is one of the key elements that ensure efficient operations in such environments. A very common example [...]

MSR Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Kshitij Goel

Title: Rapid Subsurface Exploration with Multiple Aerial Robots Abstract: This thesis develops a robotic exploration framework that allows for rapid and communication-efficient mapping of unknown environments with a team of aerial robots. Aerial robots can provide rapid and agile mobility in diverse environments where ground mobility is either severely constrained or impossible. However, high-speed flight [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Albert Ye

Title: BusEdge: Efficient Live Video Analytics for Transit Buses via Edge Computing Abstract: Many vehicles like transit buses are now routinely fitted with cameras. These live visual data are invaluable to achieve real-time traffic monitoring, but it is intractable to handle such a gigantic amount of data either locally or in the cloud due to [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Planning to Optimize and Learn Reward in Navigation Tasks in Structured Environments with Time Constraints

Abstract: Planning problems in which an agent must perform tasks for reward by navigating its environment while constrained by time and location have a wide variety of applications in robotics. Many real-world environments in which such planning problems apply, such as office buildings or city streets, are very structured. They consist of passages with notable [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Yunze Man

Title: Multi-Echo 3D Object Detection Abstract: LiDAR sensors can be used to obtain a wide range of measurement signals other than a simple 3D point cloud, and those signals can be leveraged to improve perception tasks like 3D object detection. A single laser pulse can be partially reflected by multiple objects along its path, resulting [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Krishna Uppala – MSR Thesis Talk

Title: Exemplar free video retrieval.   Abstract: Video retrieval of activities has a wide range of applications. In the traditional mode of operation,  a collection of example videos describing the activities are given and the retrieval technique identifies other samples in a dataset that semantically match the examples provided. However, retrieval using a collection of example [...]

MSR Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Ruixuan Liu – MSR Thesis Talk

Title: Data-efficient Behavior Prediction for Safe Human-Robot Collaboration.   Abstract: Predicting human behavior is critical to facilitate safe and efficient human-robot collaboration (HRC). However, human behavior is difficult to predict due to the scarcity of human motion data. This work explores using online adaptation, an online approach, and data augmentation, an offline approach, to deal with the [...]

MSR Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Vidhi Jain

Title: Explainability in navigation policies Abstract: Today's autonomous agents have improved performance with learning and planning algorithms, but the applicability of such agents in the human-inhabited world is confined. Humans find it hard to explain the model's decision-making and thus, may not trust it as a teammate. While working with a machine learning model that [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Aditya Sripada

Title: Turning Behavior of Running Systems induced by Leg Placement Abstract: Compared to legged robots, animals and humans can perform much faster and larger turns, even when they run at high speeds. Such rapid turns require the body of a runner to reorient dynamically and in synchrony with its redirection during stance. While it is [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Rohit Jena

Title: Learning Mental Models of Experts in a Simulated Search and Rescue Scenario   Abstract: Search and Rescue is a task where the rescuers need to be cognitively agile, strategically consistent, and efficient to save as many trapped victims as possible. In a team scenario, the rescuers must additionally coordinate with each other based on [...]

MSR Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Mohamad Qadri

Title: Robotic Vision for 3D Modeling and Sizing in Agriculture Abstract: Obtaining accurate perceptual information is a critical component in agricultural robotics since there is a heavy need for interaction with the environment to perform tasks such as pruning, harvesting, and phenotyping. In this thesis, we tackle the problem of perception and 3D modeling in [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Alex Baikovitz

Title: Underground Representations for Robot Localization and Mapping   Abstract: There has been exciting recent progress in using radar as a sensor for robot navigation given its increased robustness to varying environmental conditions. However, within these different radar perception systems, ground penetrating radar (GPR) remains under-explored. By measuring structures beneath the ground, GPR can provide stable features that [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Ankur Deka

Title: On combining Reinforcement Learning & Adversarial Training Abstract: Reinforcement Learning (RL) allows us to train an agent to excel at a given sequential decision-making task by optimizing for a reward signal. Adversarial training involves a joint optimization scheme where an agent and an adversary compete against each other. In this work, we explore some [...]

MSR Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Zhengyi Luo

Title: Physics-based object-aware ego-centric human pose estimation Abstract: We investigate the roles of body kinematics, dynamics, and objects for 3D human pose estimation using a head-mounted camera. Human kinematics models play a key role in encoding the natural range of human motion, while dynamics models can react to the spatial arrangement between humans and objects [...]