PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Robotic Grasping in the Wild

Zoom Link Abstract Robotics and artificial intelligence have witnessed tremendous progress in the past decade. Yet, we are still far from building the general purpose robot butler that can autonomously operate in homes and help with manipulation tasks like household chores. Grasping is an important action primitive for manipulation and needs to generalize to unstructured [...]

PhD Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Resource-constrained learning and inference for visual perception

Zoom Link Abstract Real-world applications usually require computer vision algorithms to meet certain resource constraints. In this talk, I will present evaluation methods and principled solutions for both cases of training and testing. First, I will talk about a formal setting for studying training under the non-asymptotic, resource-constrained regime, i.e., budgeted training. We analyze the [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Multi-hypothesis iSAM2 for Ambiguity-aware Passive and Active SLAM

Archived video Abstract Simultaneous localization and mapping (SLAM) is the problem of estimating the state of a moving agent with sensors on it while simultaneously reconstructing a map of its surrounding environment, which has been a popular research field due to its wide applications. As many state-of-the-art SLAM algorithms can already achieve high accuracy in [...]

VASC Seminar
Jia-Bin Huang
Assistant Professor
Virginia Tech

Learning to See Through Occlusions and Obstructions

Virtual VASC:  https://cmu.zoom.us/j/249106600   Abstract:  Photography allows us to capture and share memorable moments of our lives. However, 2D images appear flat due to the lack of depth perception and may suffer from poor imaging conditions such as taking photos through reflecting or occluding elements. In this talk, I will present our recent efforts to [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Terrain Relative Navigation for Lunar Polar Roving: Exploiting Geometry, Shadows, and Planning

Archived Zoom Video Abstract Water ice at the lunar poles could be the most valuable resource beyond planet Earth. However, that value is not foregone, and can only be determined by rovers that evaluate the distributions of abundance, concentration, and characteristics of this ice. The near-term explorations will be solar and unlikely to endure night, [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Resource-Constrained State Estimation with Multi-Modal Sensing

Zoom Link Accurate and reliable state estimation is essential for safe mobile robot operation in real-world environments because ego-motion estimates are required by many critical autonomy functions such as control, planning, and mapping. Computing accurate state estimates depends on the physical characteristics of the environment, the selection of suitable sensors to capture that information, and [...]

VASC Seminar
Yuxin Wu
Research Engineer
Facebook AI Research

Detectron2 in Object Detection Research

Virtual VASC:  https://cmu.zoom.us/j/249106600   Abstract:  Detectron2 is Facebook's library for object detection and segmentation. It has been used widely in FAIR's research and Facebook's products. This talk will introduce detectron2 with a focus on its use in object detection research, including the lessons we learned from building it, as well as the new research enabled [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Aditya Dhawale – MSR Thesis Talk

TBA

Title: Hierarchical Gaussian Distributions for Real-Time SLAM ZOOM Link: (Virtual Presentation) https://cmu.zoom.us/j/7210519673 Abstract: We present Gaussian distributions as structure primitives in a hierarchical multi-fidelity framework to enable accurate real-time Simultaneous Localization and Mapping (SLAM) using uncertain depth data. Real-time mapping and localization capabilities on a mobile robot can enable deployment of robots in real-world scenarios. An autonomous system must [...]

VASC Seminar
Olga Russakovsky
Assistant Professor
Department of Computer Science, Princeton University

Fairness in visual recognition

Virtual VASC Seminar:  https://cmu.zoom.us/j/249106600   Abstract: Computer vision models trained on unparalleled amounts of data hold promise for making impartial, well-informed decisions in a variety of applications. However, more and more historical societal biases are making their way into these seemingly innocuous systems. Visual recognition models have exhibited bias by inappropriately correlating age, gender, sexual [...]

PhD Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Planning and Execution using Inaccurate Models with Provable Guarantees

Zoom Link Abstract: Models used in modern planning problems to simulate outcomes of real world action executions are becoming increasingly complex, ranging from simulators that do physics-based reasoning to precomputed analytical motion primitives. However, robots operating in the real world often face situations not modeled by these models before execution. This imperfect modeling can lead [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Hybrid Soft Sensing in Robotic Systems

Zoom Link Abstract: The desire to operate robots in unstructured environments, side-by-side with humans, has created a demand for safe and robust sensing skins. Largely inspired by human skin, the ultimate goal of electronic skins is to measure diverse sensory information, conform to surfaces, and avoid interfering with the natural mechanics of the host or [...]

PhD Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

The Effect of Locomotion Configuration on Discrete Obstacle Traversal for a Small Tracked Vehicle

Zoom Link Abstract: As mobile robots are being designed for increasingly rugged and unknown terrain, mechanical reconfigurability presents one possibility for improving vehicle efficiency and mobility. To validate this idea, we created an 18.5-kg modular tracked vehicle with adjustable track tension, track width, track length, and sprocket diameter. In this talk, I will explain the [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Qian Long – MSR Thesis Talk

TBA

ZOOM Link: https://cmu.zoom.us/j/7263914910   Title: Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning Abstract: In multi-agent games, the complexity of the environment can grow exponentially as the number of agents increases, so it is particularly challenging to learn good policies when the agent population is large. We introduce Evolutionary Population Curriculum (EPC), a curriculum learning [...]

MSR Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Wen-Hsuan Chu – MSR Thesis Talk

TBA

ZOOM Link: https://cmu.zoom.us/j/4417558334 Title: Neural Batch Sampling with Reinforcement Learning for Semi-Supervised Anomaly Detection Abstract: We are interested in the detection and segmentation of anomalies in images where the anomalies are typically small (i.e., a small tear in woven fabric, bro-ken pin of an IC chip). From a statistical learning point of view, anomalies have [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Chendi Lin – MSR Thesis Talk

TBA

Zoom Link: https://cmu.zoom.us/j/95571441174   Title: Online Connectivity-aware Dynamic Distribution for Heterogeneous Multi-Robot Systems   Abstract: In many multi-robot applications the robot team needs to execute multiple tasks simultaneously with different task-related controllers. To ensure effective coordination and at the same time avoid collisions, the robots have to stay connected. In this work, we consider the problem where a [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Robert Li – MSR Thesis Talk

TBA

Zoom Link: https://cmu.zoom.us/j/91465601940   Title: Solving Puzzles Like A Human With Two Stage Random Search   Abstract: Humans are remarkably good at solving novel physical puzzles and tasks, with only a basic understanding of abstract concepts like kinematics, gravity, mass, friction, and inertia. We wanted to replicate how a human would explore the search space of a problem. [...]

MSR Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Samantha Speer – MSR Thesis Talk

TBA

Zoom Link: https://cmu.zoom.us/j/98546775449   Title: Grounding Abstract Concepts With Robotic Manipulatives   Abstract: Technology in education has been on the rise for a long time, developing from computer manipulatives to mobile apps and finally into robotics. Robotics has the unique affordances of the classic physical manipulatives and virtual manipulative, providing both a physical aspect along with [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Vaibhav (Vai) Viswanathan – MSR Thesis Talk

TBA

Zoom Link: https://cmu.zoom.us/j/2112607862   Title: Bitwise Trajectory Elimination: An Efficient Method for Filtering Trajectory Libraries for Quadrotor Navigation   Abstract: Quadrotor flight in unknown environments is challenging due to the limited range of perception sensors, state estimation drift, and limited onboard computation. In this work, we tackle these challenges by proposing an efficient, reactive planning approach. We introduce [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Xi (Sandy) Sun – MSR Thesis Talk

TBA

Zoom link: https://cmu.zoom.us/j/94541819048   Title: Visual-Inertial Source Localization for Co-Robot Rendezvous   Abstract: We aim to enable robots to visually localize a target person through the aid of an additional sensing modality -- the target person's 3D inertial measurements. The need for such technology may arise when a robot is to meet a person in [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Harsh Agarwal – MSR Thesis Talk

Zoom Link: https://cmu.zoom.us/j/99544484313   Title   DeepBLE - Generalizing RSSI based Localization Across Different Devices   Abstract   Accurate smartphone localization ( < 1-meter error) for indoor navigation using only RSSI received from a set of BLE beacons remains a challenging problem, due to the inherent noise of RSSI measurements. To overcome the large variance in [...]