PhD Speaking Qualifier
Principal Research Programmer / Analyst
Robotics Institute,
Carnegie Mellon University

Terrain Perception using Structured Light for Micro-Rovers

Abstract: With continuing advancement in technology, the future of planetary exploration is likely to be dominated by robotic missions. Yet rovers capable of science investigations are slow and bulky with very limited computing which prohibits demonstrating full autonomy. These rovers are also risk averse due to their huge mission cost. However there is a new [...]

VASC Seminar
Ricardo Martin-Brualla
Researcher
Google

Photorealistic Reconstruction of Landmarks and People using Implicit Scene Representation

Abstract: Reconstructing scenes to synthesize novel views is a long standing problem in Computer Vision and Graphics. Recently, implicit scene representations have shown novel view synthesis results of unprecedented quality, like the ones of Neural Radiance Fields (NeRF), which use the weights of a multi-layer perceptron to model the volumetric density and color of a [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Bayesian Models for Science-Driven Robotic Exploration

Abstract: Planetary rovers have traversed many kilometers and made major scientific discoveries. However, they spend a considerable amount of time awaiting instructions from ground operators. The reason is that they are designed for automated science data collection, not for autonomous exploration. The exploration of more distant worlds with stronger communication constraints will require a new [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Expressive Real-time Intersection Scheduling: New Methods for Adaptive Traffic Signal Control

Abstract: Traffic congestion is a widespread problem throughout global metropolitan areas. In this thesis, we consider methods to optimize the performance of traffic signals to reduce congestion. We begin by presenting Expressive Real-time Intersection Scheduling (ERIS), a schedule-driven intersection control strategy that runs independently on each intersection in a traffic network. For each intersection, ERIS [...]

PhD Thesis Proposal
Project Scientist
Robotics Institute,
Carnegie Mellon University

Verification and Accreditation of Artificial Intelligence

Abstract: This work involves formally verifying a trained model's adherence to important design specifications for the purpose of model accreditation. Accreditation of a trained model requires enumeration of the explicit operational conditions under which the model is certified to meet all necessary specifications. By verifying model adherence to specifications set by developers, we increase the [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Direct-drive Hands: Making Robot Hands Transparent and Reactive to Contacts

Abstract: Industrial manipulators and end-effectors are a vital driver of the automation revolution. These robot hands, designed to reject disturbances with stiffness and strength, are inferior to their human counterparts. Human hands are dexterous and nimble effectors capable of a variety of interactions with the environment. Through this thesis we wish to answer a question: [...]

VASC Seminar
Guoliang Kang
Postdoctoral Research Associate
LTI, CMU

Towards Discriminative and Domain-Invariant Feature Learning

Abstract: Deep neural networks have achieved great success in various visual applications, when trained with large amounts of labeled in-domain data. However, the networks usually suffer from a heavy performance drop on the data whose distribution is quite different from the training one. Domain adaptation methods aim to deal with such performance gap caused by [...]

VASC Seminar
Zhiqiang Shen
Postdoctoral Researcher
Department of Electrical & Computer Engineering, CMU

Learning Efficient Visual Representation on Model, Data, Label and Beyond

Abstract: Efficient deep learning is a broad concept that we aim to learn compressed deep models and develop training algorithms to improve the efficiency of model representations, data and label utilization, etc. In recent years, deep neural networks have been recognized as one of the most effective techniques for many learning tasks, also, in the [...]

VASC Seminar
Yannis Kalantidis
Research Scientist
NAVER LABS Europe

Self-supervised Learning and Generalization

Abstract: Contrastive self-supervised learning is a highly effective way of learning representations that are useful for, i.e. generalise, to a wide range of downstream vision tasks and datasets. In the first part of the talk, I will present MoCHi, our recently published contrastive self-supervised learning approach (NeurIPS 2020) that is able to learn transferable representations [...]