PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Towards Large-scale and Long-term Neural Map Representations

Abstract: We address the problem of large-scale and long-term neural map representations. Maps, as our prior understanding toward the environment, provide valuable information for modern robotics applications such as autonomous driving and AR/VR. The size of maps largely affects the end task performance: usually a more detailed map can support better performance, but would cost [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Self-Improving 3D Scene Representations

GHC 6501

Abstract: Most computer vision models in deployment today are not continually learning. Instead, they are in a “test” mode, where they will behave the same way perpetually, until they are replaced by newer models. This is a problem, because it means the models may perform poorly as soon as their “test” environment diverges from their [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk – Manash Pratim Das

TBA

Title: Model-Accuracy Aware Anytime Planning with Simulation Verification for Navigating Complex Terrains Abstract: Off-road and unstructured environments often contain complex patches of various types of terrain, rough elevation changes, deformable objects, etc. An autonomous ground vehicle traversing such environments experiences physical interactions that are extremely hard to model at scale and thus very hard to [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk – Akshay Dharamavaram

NSH 4305

Title: Stabilizing the Training Dynamics of Generative Models using Self-Supervision   Abstract: Generative Models have been shown to be adept in mimicking the behavior of an unknown distribution solely from bootstrapped data. However, deep learning models have been shown to overfit in either the minimization or maximization stage of the two player min-max game, resulting [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Direct-drive Hands: Making Robot Hands Transparent and Reactive to Contacts

GHC 6501

Abstract: Industrial manipulators and end-effectors are a vital driver of the automation revolution. These robot hands, designed to reject disturbances with stiffness and strength, are inferior to their human counterparts. Human hands are dexterous and nimble effectors capable of a variety of interactions with the environment. Through this thesis we wish to answer a question: [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk – Vivek Roy

Newell-Simon Hall 3305

Title: Smartphone localization for Indoor Pedestrian Navigation Abstract: Global positioning system (GPS) interfacing with applications such as Google Maps has proven very useful for navigation in outdoor open settings. However in crowded metropolitan environments with high rise buildings or in indoor settings, GPS quickly becomes unreliable. Using sensors found on commodity smartphones to perform accurate [...]

VASC Seminar
David Fouhey
Assistant Professor
EECS Department , University of Michigan

Understanding 3D Scenes and Interacting Hands

Abstract:  Abstract: The long-term goal of my research is to help computers understand the physical world from images, including both 3D properties and how humans or robots could interact with things. This talk will summarize two recent directions aimed at enabling this goal.   I will begin with learning to reconstruct full 3D scenes, including [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Manipulating Objects with Challenging Visual and Geometric Properties

GHC 6501

Abstract: Object manipulation is a well-studied domain in robotics, yet manipulation remains difficult for objects with visually and geometrically challenging properties. Visually challenging properties, such as transparency and specularity, break assumptions of Lambertian reflectance that existing methods rely on for grasp estimation. On the other hand, deformable objects such as cloth pose both visual and [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

TIGRIS: An Informed Sampling-based Algorithm for Informative Path Planning

GHC 9115

Abstract: In this talk I will present our sampling-based approach to informative path planning that allows us to tackle the challenges of large and high-dimensional search spaces. This is done by performing informed sampling in the high-dimensional continuous space and incorporating potential information gain along edges in the reward estimation. This method rapidly generates a [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk – Zhe Huang

NSH 4305

Title: Distributed Reinforcement Learning for Autonomous Driving Abstract: Due to the complex and safety-critical nature of autonomous driving, recent works typically test their ideas on simulators designed for the very purpose of advancing self-driving research. Despite the convenience of modeling autonomous driving as a trajectory optimization problem, few of these methods resort to online reinforcement [...]