Carnegie Mellon University
Vigneshram Krishnamoorthy – MSR Thesis Talk
Title: A Computational Framework for Norm-Aware Reasoning in Autonomous Systems Abstract: Autonomous agents are increasingly deployed in complex social environments where they not only have to reason about their domain goals but also about norms that can impose constraints on task performance. Integrating task planning with norm aware reasoning is a challenging problem due to [...]
Carnegie Mellon University
Deep Reinforcement Learning Representations for Robotics
Abstract: A long standing goal of robotics research is to create algorithms that can automatically learn complex control strategies from scratch. Part of the challenge of applying such algorithms to robots is the choice of representation. While RL algorithms have been successfully applied to many robotics tasks such as Ball-in-a-Cup and various RoboCup soccer domains, [...]
Carnegie Mellon University
Speeding Up Search-based Motion Planning Via Conservative Heuristics
Abstract: Weighted A* search (wA*) is a popular tool for robot motion-planning. Its efficiency however depends on the quality of heuristic function used. In fact, it has been shown that the correlation between the heuristic function and the true cost-to-goal significantly affects the efficiency of the search, when used with a large weight on the [...]
Carnegie Mellon University
Learning multi-robot behaviors for online control
Abstract: Finding dynamically feasible and safe global plans for multi-agent teams in real world applications is enormously difficult because the decision branching factor, when considering all possible interactions across agents and an environment, is usually intractable. Humans, however, have great success in the multi-agent planning domain by using behaviors: practiced, coordinated responses for groups of [...]
Carnegie Mellon University
Routing for Persistent Exploration in Dynamic Environments with Teams of Energy-Constrained Robots
Abstract: In domains requiring effective situational awareness with limited resources, prioritizing focus is critical. Search and rescue tasks require fast identification of safe avenues for rescuers to traverse the area. Inspection tasks must realize trends over long durations to identify issues caused by the confluence of high-stress modes that compound into catastrophic failure. Deploying robots [...]
Carnegie Mellon University
Intra-Robot Replanning and Learning for Multi-Robot Teams in Complex Dynamic Domains
Abstract: In complex dynamic multi-robot domains, there is a set of individual robots that must coordinate together through a centralized planner that inevitably makes assumptions based on a model of the environment and the actions of the individual. Eventually, the individuals may encounter failures, because the centralized planner’s models of the states and actions are [...]
Carnegie Mellon University
Toward a New Type of Agile and Dexterous Mobile Manipulator
Abstract: Mobile robot bases have been developed over many decades, but only recently have researchers added arms to these bases, opening up the rich field of mobile manipulation. Most of these robots either need wide, heavy, statically-stable bases that may or may not be omnidirectional to support the arms and provide stability. Such robot bases, [...]
Carnegie Mellon University
Light Sheet Depth Imaging
Abstract: Once confined to industrial manufacturing facilities and research labs, robots are increasingly entering everyday life. As specialized robots are developed for tasks such as autonomous driving, package delivery, and aerial videography, there is a growing need for affordable depth sensing technology. Robots use sensors like scanning LIDAR, depth cameras, and passive stereo cameras to [...]
Carnegie Mellon University
Towards Generalization and Efficiency in Reinforcement Learning
Abstract: In classic supervised machine learning, a learning agent behaves as a passive observer: it receives examples from some external environment which it has no control over and then makes predictions. Reinforcement Learning (RL), on the other hand, is fundamentally interactive: an autonomous agent must learn how to behave in an unknown and possibly hostile [...]
Carnegie Mellon University
Akshat Agarwal – MSR Thesis Talk
Title: Learning Transferable Cooperative Behavior in Multi-Agent Teams Abstract: We study the emergence of cooperative behavior and communication protocols in multi-agent teams, for collaboratively accomplishing tasks like coverage control and formation control for swarms. Using graph neural networks to model inter-agent communications, we present state-of-the-art results in a fully decentralized execution framework which assumes [...]