Carnegie Mellon University
Wentao Yuan – MSR Thesis Talk
Title: 3D Shape Completion and Canonical Pose Estimation with Structured Neural Networks Abstract: 3D point cloud is an efficient and flexible representation of 3D structures and the raw output of many 3D sensors. Recently, neural networks operating on point clouds have shown superior performance on various 3D understanding tasks, thanks to their power to [...]
Carnegie Mellon University
Planning under Uncertainty with Multiple Heuristics
Abstract: Many robotic tasks, such as mobile manipulation, often require interaction with unstructured environments and are subject to imperfect sensing and actuation. This brings substantial uncertainty into the problems. Reasoning under this uncertainty can provide higher level of robustness but is computationally significantly more challenging. More specifically, sequential decision making under motion and sensing uncertainty [...]
Rawal Khirodkar – MSR Thesis Talk
Title: Leveraging Simulation for Computer Vision Abstract: A large amount of labeled data is required to train deep neural networks. The process of data annotation on such a large scale is expensive and time-consuming. A promising alternative in this regard is to use simulation to generate labeled synthetic data. However, a network trained solely [...]
Carnegie Mellon University
Dexterous Manipulation via Simple Robot Hands
Abstract: Most of the industrial robotic applications nowadays can only deal with pick-and-place manipulation, in which fixed graspings are the only interactions between the object and the robot hand. Simple hands, such as pinch grippers and suction cups, suffice to accomplish such tasks. However, there exist many unsolved automation problems where more dexterous manipulations are [...]
Carnegie Mellon University
Maximilian Sieb – MSR Thesis Talk
Title: Visual Imitation Learning for Robot Manipulation Abstract: Imitation learning has been successfully applied to solve a variety of tasks in complex domains where an explicit reward function is not available. However, most imitation learning methods require access to the robot's actions during demonstration. This stands in a stark contrast to how we [...]
Carnegie Mellon University
Enabling Role-Reversible Human-Robot Interaction by Leveraging Standardized Tools for Provider-Receiver Interactions
Abstract: Developing 'social intelligence' for assistive robots to seamlessly interact with humans remains an open research challenge. However, socially assistive robots typically engage in types of interactions that already exist between humans, which makes models of human-human interactions useful to inform the design of robot social behaviors. In particular, in applications such as healthcare, therapy [...]
Carnegie Mellon University
Nikhil Jog – MSR Thesis Talk
Title: Highly Miniaturized Robots for Inspection of Small Nuclear Piping Abstract: Bomb making in the 20th century resulted in the creation of massive facilities to produce Uranium. As part of a multi-billion-dollar agenda, the measurement of radioactivity is required for the safe disposal of residual Uranium in piping. Manual techniques have proven too approximate, [...]
Carnegie Mellon University
Contrastive View Predictive Learning with 3D-Bottlenecked RNNs
Abstract: In this talk, I will describe our recent work on neural architectures for visual recognition, which use 3D not as input nor as the desired output space, but rather as the bottleneck of the learned representations. We consider embodied agents moving in otherwise static worlds equipped with these architectures; they learn 3D visual feature [...]
Chao Cao – MSR Thesis Talk
Title: Topological Path Planning for Mobile Robot Applications Abstract: Many path planning problems in mobile robot applications can be solved more efficiently in the topological space. By using the language of topology, the richer spatial information failed to captured by graph/grid-based map representations can be explicitly expressed and exploited. With that, it is possible [...]
Carnegie Mellon University
MSR Thesis Talk – Tao Chen
Title: Deep Reinforcement Learning with Prior Knowledge Abstract: Deep reinforcement learning has been applied to many domains from computer games, natural language processing, recommendation systems to robotics. While model-free reinforcement learning algorithms are promising approaches to learning policies without knowledge of the system dynamics, they usually require much more data. In this thesis, we [...]