MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Expressive Attentional Communication Learning using Graph Neural Networks

Newell-Simon Hall 4305

Abstract: Multi-agent reinforcement learning presents unique hurdles such as the non-stationary problem beyond single-agent reinforcement learning that makes learning effective decentralized cooperative policies using an agent's local state extremely challenging. Effective communication to share information and coordinate is vital for agents to work together and solve cooperative tasks, as the ubiquitous evidence of communication in [...]

MSR Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Estimating Object Importance and Modeling Driver’s Situational Awareness for Intelligent Driving

3305 Newell-Simon Hall

Abstract: The ability to identify important objects in a complex and dynamic driving environment can help assistive driving systems alert drivers. These assistance systems also require a model of the drivers' situational awareness (SA) (what aspects of the scene they are already aware of) to avoid unnecessary alerts. This thesis builds towards such intelligent driving [...]

Faculty Events
Research Professor / Head of Faculty Mentoring
Robotics Institute,
Carnegie Mellon University

AI for Human Mobility

Newell-Simon Hall 4305

Abstract This talk will describe a series of AI and robotics projects aimed at helping people independently move through cities and buildings. Projects include a deployed personalized transit information app, guide robots for people who are blind, and an integrated AI system that assists blind users with guidance and exploration. Specific findings will be presented [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Learning for Perception and Strategy: Adaptive Omnidirectional Stereo Vision and Tactical Reinforcement Learning

Newell-Simon Hall 4305

Abstract: Multi-view stereo omnidirectional distance estimation usually needs to build a cost volume with many hypothetical distance candidates. The cost volume building process is often computationally heavy considering the limited resources a mobile robot has. We propose a new geometry-informed way of distance candidates selection method which enables the use of a very small number [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Online-Adaptive Self-Supervised Learning with Visual Foundation Models for Autonomous Off-Road Driving

3305 Newell-Simon Hall

Abstract: Autonomous robot navigation in off-road environments currently presents a number of challenges. The lack of structure makes it difficult to handcraft geometry-based heuristics that are robust to the diverse set of scenarios the robot might encounter. Many of the learned methods that work well in urban scenarios require massive amounts of hand-labeled data, but [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Multimodal Representations for Adaptable Robot Policies in Human-Inhabited Spaces

NSH 4305

Abstract:  Human beings sense and express themselves through multiple modalities. To capture multimodal ways of human communication, I want to build adaptable robot policies that infer task pragmatics from video and language prompts, reason about sounds and other sensors, take actions, and learn mannerisms of interacting with people and objects. Existing solutions for robot policies [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Interleaving Discrete Search and Continuous Optimization for Kinodynamic Motion Planning

NSH 4305

Abstract: Motion planning for dynamically complex robotic tasks requires explicit reasoning within constraints on velocity, acceleration, force/torque, and kinematics such as avoiding obstacles. To meet these constraints, planning algorithms must simultaneously make high-level discrete decisions and low-level continuous decisions. For example, pushing a heavy object involves making discrete decisions about contact locations and continuous decisions [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Goal-Expressive Movement for Social Navigation: Where and When to Behave Legibly

NSH 3305

Abstract: Robots often need to communicate their navigation goals to assist observers in anticipating the robot's future actions. Enabling observers to infer where a robot is going from its movements is particularly important as robots begin to share workplaces, sidewalks, and social spaces with humans. We can use legible motion, or movements that use intentional [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Eye Gaze for Intelligent Driving

NSH 4305

Abstract:  Intelligent vehicles have been proposed as one path to increasing traffic safety and reducing on-road crashes. Driving “intelligence” today takes many forms, ranging from simple blind spot occupancy or forward collision warnings to distance-aware cruise and all the way to full driving autonomy in certain situations. Primarily, these methods are outward-facing and operate on [...]

Faculty Events
Research Professor
Robotics Institute,
Carnegie Mellon University

AI-CARING

Newell-Simon Hall 4305

AI-CARING is an NSF-sponsored institute, led by Georgia Tech, whose mission is to investigate, develop and evaluate AI technologies to help older adults live independently.  The Institute focuses on providing reminders to the older adults and alerting caregivers when necessary, assisting older adults with tasks such as meal preparation, motivating them to exercise, providing conversational [...]