Carnegie Mellon University
Learning Depth from Monocular Videos using Direct Methods
The ability to predict depth from a single image - using recent advances in CNNs - is of increasing interest to the vision community. Unsupervised strategies to learning are particularly appealing as they can utilize much larger and varied monocular video datasets during learning without the need for ground truth depth or stereo. In previous works, separate pose and [...]
Carnegie Mellon University
Probabilistic Approaches for Pose Estimation
Abstract: Virtually all robotics and computer vision applications require some form of pose estimation; such as registration, structure from motion, sensor calibration, etc. This problem is challenging because it is highly nonlinear and nonconvex. A fundamental contribution of this thesis is the development of fast and accurate pose estimation by formulating in a parameter space [...]
Carnegie Mellon University
Learning-based Lane Following and Changing Behaviors for Autonomous Vehicle
This thesis explores learning-based methods in generating human-like lane following and changing behaviors in on-road autonomous driving. We summarize our main contributions as: 1) derive an efficient vision-based end-to-end learning system for on-road driving; 2) propose a novel attention-based learning architecture with sub-action space to obtain lane changing behavior using a deep reinforcement learning algorithm; [...]
Carnegie Mellon University
Real-to-Virtual Domain Unification for End-to-End Autonomous Driving
Abstract: In the spectrum of vision-based autonomous driving, vanilla end-to-end models are not interpretable and suboptimal in performance, while mediated perception models require additional intermediate representations such as segmentation masks or detection bounding boxes, whose annotation can be prohibitively expensive as we move to a larger scale. More critically, all prior works fail to deal with the notorious [...]
Carnegie Mellon University
Reconstruction of dynamic vehicles from multiple unsynchronized cameras
Despite significant research in the area, reconstruction of multiple dynamic rigid objects (eg. vehicles) observed from wide-baseline, uncalibrated and unsynchronized cameras, remains hard. On one hand, feature tracking works well within each view but is hard to correspond across multiple cameras with limited overlap in fields of view or due to occlusions. On the other [...]
Carnegie Mellon University
Algorithms for Timing and Sequencing Behaviors in Robotic Swarms
Abstract: Robotic swarms are multi-robot systems whose global behavior emerges from local interactions between individual robots and spatially proximal neighboring robots. Each robot can be programmed with several local control laws that can be activated depending on an operator's choice of global swarm behavior (e.g. flocking, aggregation, formation control, area coverage). In contrast to other [...]
Carnegie Mellon University
Data-Driven Statistical Models of Robotic Manipulation
Abstract: Improving robotic manipulation is critical for robots to be actively useful in real-world factories and homes. While some success has been shown in simulation and controlled environments, robots are slow, clumsy, and not general or robust enough when interacting with their environment. By contrast, humans effortlessly manipulate objects. One possible reason for this discrepancy [...]
Carnegie Mellon University
Observing Humans In Their Natural Habitat: Data, Algorithms, and Analysis
Abstract: Computer vision has a great potential to help our daily lives by searching for lost keys, watering flowers or reminding us to take a pill. To succeed with such tasks, computer vision methods need to be trained from real and diverse examples of our daily dynamic scenes. First, we need to give computers insight [...]
Carnegie Mellon University
Ergodic Coverage and Active Search in Constrained Environments
In this thesis, we explore sampling-based trajectory optimization applied to search for objects of interest in constrained environments (e.g., a UAV searching for a target in the presence of obstacles). We consider two search scenarios: in the first scenario, accurate prior information distribution of the possible locations of the objects of interest is available, thus [...]