Carnegie Mellon University
Online, Interactive User Guidance for High-dimensional, Constrained Motion Planning
Abstract: We consider the problem of planning a collision-free path for a high-dimensional robot. Specifically, we suggest a planning framework where a motion-planning algorithm can obtain guidance from a user. In contrast to existing approaches that try to speed up planning by incorporating experiences or demonstrations ahead of planning, we suggest to seek user guidance [...]
RI Faculty Social
All Robotics Institute faculty are invited to attend this informal team-building business/social event. Beverages and snacks will be provided.
Carnegie Mellon University
MRFMaps: A Representation for Multi-Hypothesis Dense Volumetric SLAM
Abstract: Robust robotic flight requires tightly coupled perception and control. Conventional approaches employ a SLAM algorithm to infer the most likely trajectory and then generate an occupancy grid map using dense sensor data for planning purposes. In such approaches all the robustness and accuracy costs are offset to the SLAM algorithm; if there are any [...]
Carnegie Mellon University
Learning to learn from simulation: Using simulations to learn faster on robots
Abstract: Learning for control is capable of acquiring controllers in novel task scenarios, paving the path to autonomous robots. However, typical learning approaches can be prohibitively expensive in terms of robot experiments, and policies learned in simulation do not transfer directly due to modelling inaccuracies. This encourages learning information from simulation that has a higher [...]
Bipolar Robotics – From the Arctic to the Antarctic with a stop for Fisheries in the middle latitudes.
Abstract: The Arctic, Antarctic and Greenland remain some of the least explored parts of the planet. This talk looks at efforts over the last decade to explore areas under-ice which have traditionally been difficult to access. The focus of the talk will be on the robots, the role of communications over low bandwidth acoustic links, [...]
Video Compression for Recognition & Video Recognition for Compression
Abstract: Training robust deep video representations has proven to be much more challenging than learning deep image representations. One reason is: videos are huge and highly redundant. The 'true' and interesting signal often drowns in too much irrelevant data. In the first part of the talk, I will show how to train a deep network [...]
Multimodal Computational Behavior Understanding
Emotions influence our lives. Observational methods of measuring affective behavior have yielded critical insights, but a persistent barrier to their wide application is that they are labor-intensive to learn and to use. An automated system that can quantify and synthesize human affective behavior in real-world environments would be a transformational tool for research and for [...]
Learning Robot Manipulation Skills through Experience and Generalization
Abstract: In the future, robots could be used to take care of the elderly, perform household chores, and assist in hazardous situations. However, such applications require robots to manipulate objects in unstructured and everyday environments. Hence, in order to perform a wide range of tasks, robots will need to learn manipulation skills that generalize between [...]