PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Understanding, Exploiting and Improving Inter-view Relationships

NSH 3305

Abstract: Multi-view machine learning has garnered substantial attention in various applications over recent years. Many such applications involve learning on data obtained from multiple heterogeneous sources of information, for example, in multi-sensor systems such as self-driving cars, or monitoring intensive care patient vital signs at their bed-side. Learning models for such applications can often benefit [...]

RI Event
Project Scientist
Robotics Institute,
Carnegie Mellon University

Model-Centric Verification of Artificial Intelligence

Abstract: This work shows how provable guarantees can be used to supplement probabilistic estimates in the context of Artificial Intelligence (AI) systems. Statistical techniques measure the expected performance of a model, but low error rates say nothing about the ways in which errors manifest. Formal verification of model adherence to design specifications can yield certificates [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Designing Whisker Sensors to Detect Multiple Mechanical Stimuli for Robotic Applications

Abstract: Many mammals, such as rats and seals, use their whiskers as versatile mechanical sensors to gain precise information about their surroundings. Whisker-inspired sensors on robotic platforms have shown their potential benefit, improving applications ranging from drone navigation to texture mapping. Despite this, there is a gap between the engineered sensors and many of the [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Human-in-the-loop Control of Mobile Robots

Abstract: Human-in-the-loop control for mobile robots is an important aspect of robot operation, especially for navigation in unstructured environments or in the case of unexpected events. However, traditional paradigms of human-in-the-loop control have relied heavily on the human to provide precise and accurate control inputs to the robot, or reduced the role of the human [...]

VASC Seminar
Umberto Michieli
Postdoctoral Researcher and Adjunct Professor
University of Padua

Visual Understanding across Semantic Groups, Domains and Devices

Abstract: Deep neural networks often lack generalization capabilities to accommodate changes in the input/output domain distributions and, therefore, are inherently limited by the restricted visual and semantic information contained in the original training set. In this talk, we argue the importance of the versatility of deep neural architectures and we explore it from various perspectives.   [...]

RI Seminar
Stefanos Nikolaidis
Assistant Professor
Computer Science, University of Southern California

Towards Robust Human-Robot Interaction: A Quality Diversity Approach

Abstract: The growth of scale and complexity of interactions between humans and robots highlights the need for new computational methods to automatically evaluate novel algorithms and applications. Exploring the diverse scenarios of interaction between humans and robots in simulation can improve understanding of complex human-robot interaction systems and avoid potentially costly failures in real-world settings. [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Planning and Execution using Inaccurate Models with Provable Guarantees on Task Completeness

Abstract: Modern planning methods are effective in computing feasible and optimal plans for robotic tasks when given access to accurate dynamical models. However, robots operating in the real world often face situations that cannot be modeled perfectly before execution. Thus, we only have access to simplified but potentially inaccurate models. This imperfect modeling can lead [...]

VASC Seminar
Chao Chen
Assistant Professor
Stony Brook University

Topology-Driven Learning for Biomedical Imaging Informatics

Abstract: Thanks to decades of technology development, we are now able to visualize in high quality complex biomedical structures such as neurons, vessels, trabeculae and breast tissues. We need innovative methods to fully exploit these structures, which encode important information about underlying biological mechanisms. In this talk, we explain how topology, i.e., connected components, handles, loops, [...]

RI Seminar
Professor / Director of RI
Robotics Institute,
Carnegie Mellon University

Lessons from the Field: Deep Learning and Machine Perception for field robots

Abstract: Mobile robots now deliver vast amounts of sensor data from large unstructured environments. In attempting to process and interpret this data there are many unique challenges in bridging the gap between prerecorded data sets and the field. This talk will present recent work addressing the application of machine learning techniques to mobile robotic perception. [...]

VASC Seminar
Gianfranco Doretto
Associate Professor
West Virginia University

Learning generative representations for image distributions

Abstract: Autoencoder neural networks are an unsupervised technique for learning representations, which have been used effectively in many data domains. While capable of generating data, autoencoders have been inferior to other models like Generative Adversarial Networks (GAN’s) in their ability to generate image data. We will describe a general autoencoder architecture that addresses this limitation, and [...]