MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Learning on the Move: Integrating Action and Perception for Mobile Manipulation

Newell-Simon Hall 4305

Abstract: While there has been remarkable progress recently in the fields of manipulation and locomotion, mobile manipulation remains a long-standing challenge. Compared to locomotion or static manipulation, a mobile system must make a diverse range of long-horizon tasks feasible in unstructured and dynamic environments. While the applications are broad and interesting, there are a plethora [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Differentiable Convex Modeling for Robotic Planning and Control

NSH 4305

Abstract: Robotic simulation, planning, estimation, and control, have all been built on top of numerical optimization. In this same time, modern convex optimization has matured into a robust technology delivering globally optimal solutions in polynomial time. With advances in differentiable optimization and custom solvers capable of producing smooth derivatives, convex modeling has become fast, reliable, [...]

Seminar
Dr. Audrey Sedal
Assistant Professor
Mechanical Engineering, McGill University

Simulation-Driven Soft Robotics

Newell-Simon Hall 4305

Abstract: Soft-bodied robots present a compelling solution for navigating tight spaces and interacting with unknown obstacles, with potential applications in inspection, medicine, and AR/VR.  Yet, even after a decade, soft robots remain largely in the prototype phase without scaling to the tasks where they show the most promise. These systems are difficult to design and [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Plan to Learn: Active Robot Learning by Planning

NSH 4305

Abstract: Robots need a diverse repertoire of capable motor skills to succeed in the open world. Such a skillset cannot be learned or designed purely on human initiative. In this thesis, we advocate for an active continual learning approach that enables robots to take charge of their own learning. The goal of an autonomously learning [...]

Faculty Events

RI Faculty Business Meeting

Newell-Simon Hall 4305

Meeting for RI Faculty. Discussions include various department topics, policies, and procedures. Generally meets weekly.

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Continual Personalization of Human Actions with Prompt Tuning

3305 Newell-Simon Hall

Abstract: In interactive computing devices (VR/XR headsets), users interact with the virtual world using hand gestures and body actions. Typically, models deployed in such XR devices are static and limited to their default set of action classes. The goal of our research is to provide users and developers with the capability to personalize their experience by [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Policy Decomposition

NSH 4305

Abstract: Optimal Control is a popular formulation for designing controllers for dynamic robotic systems. Under the formulation, the desired long-term behavior of the system is encoded via a cost function and the policy, i.e. a mapping from the state of the system to control commands, to achieve the desired behavior are obtained by solving an [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Analysis by Synthesis for Modern Computer Vision

NSH 4305

Abstract: Image denoising, depth completion, scene flow, and dynamic 3D reconstruction are all examples of recovery problems: the estimation of multidimensional signals from corrupted or partial measurements. This thesis examines these problems from the classic analysis-by-synthesis perspective, where a signal model is used to propose hypotheses, which are then compared to observations. This paradigm has [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Reinforcement Learning with Spatial Reasoning for Dexterous Robotic Manipulation

3305 Newell-Simon Hall

Abstract: Robotic manipulation in unstructured environments requires adaptability and the ability to handle a wide variety of objects and tasks. This thesis presents novel approaches for learning robotic manipulation skills using reinforcement learning (RL) with spatially-grounded action spaces, addressing the challenges of high-dimensional, continuous action spaces and alleviating the need for extensive training data. Our [...]

MSR Thesis Defense
MSR Student / Graduate Research Assistant
Robotics Institute,
Carnegie Mellon University

Leveraging Vision, Force Sensing, and Language Feedback for Deformable Object Manipulation

1305 Newell Simon Hall

Deformable object manipulation represents a significant challenge in robotics due to its complex dynamics, lack of low-dimensional state representations, and severe self-occlusions. This challenge is particularly critical in assistive tasks, where safe and effective manipulation of various deformable materials can significantly improve the quality of life for individuals with disabilities and address the growing needs [...]