Context-based Recognition of Building Components - Robotics Institute Carnegie Mellon University
Graphical depiction of the Context-based Recognition of Building Components project
Context-based Recognition of Building Components
Project Head: Daniel Huber

In this project, we are investigating context-based recognition methods for identifying core building components within 3D sensor data of building interiors. Specifically, we consider walls, floors, ceilings, windows, doors, and doorways. In many cases, it is difficult to distinguish similar-looking components based on the components alone. A window looks much like a doorway, and a table has similar geometry to a floor. We believe that such ambiguous objects can be more easily recognized by considering the context of the objects. For example, a doorway is more likely to be located near the floor, and a floor is usually adjacent to a wall at the bottom, while a table is not. These types of contextual relationships can be represented and reasoned about using machine learning techniques. Our initial results indicate that the methods work well for recognizing walls, floors, and ceilings, and we are beginning to look at how windows, doors, and doorways can be incorporated into the framework.



This project is funded in part, by the National Science Foundation (CMMI-0856558) and by the Pennsylvania Infrastructure Technology Alliance.

Displaying 4 Publications

2013
Xuehan Xiong, Antonio Adan Oliver, Burcu Akinci, and Daniel Huber
Journal Article, Automation in Construction, Vol. 31, pp. 325 - 337, May, 2013
2011
Antonio Adan Oliver, Xuehan Xiong, Burcu Akinci, and Daniel Huber
Conference Paper, Proceedings of International Symposium on Automation and Robotics in Construction (ISARC '11), June, 2011
Daniel Huber, Burcu Akinci, Antonio Adan Oliver, Engin Anil, Brian E. Okorn, and Xuehan Xiong
Conference Paper, Proceedings of NSF Engineering Research and Innovation Conference, 2011
2010
Daniel Huber, Burcu Akinci, Pingbo Tang, Antonio Adan Oliver, Brian E. Okorn, and Xuehan Xiong
Conference Paper, Proceedings of 44th Annual Conference on Information Sciences and Systems (CISS '10), March, 2010

current head

current staff

current contact

past staff

  • Brian Cohen