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Abstract

We propose a new data-driven framework for novel ob-
ject detection and segmentation, or “object pop-out”. Tra-
ditionally, this task is approached via background subtrac-
tion, which requires continuous observation from a station-
ary camera. Instead, we consider this an image matching
problem. We detect novel objects in the scene using an un-
ordered, sparse database of previously captured images of
the same general environment. The problem is formulated
in a new image composition framework: 1) given an input
image, we find a small set of similar matching images; 2)
each of the matches is aligned with the input by propos-
ing a set of homography transformations; 3) regions from
different transformed matches are stitched together into a
single composite image that best matches the input; 4) the
difference between the input and the composite is used to
“pop-out” new or changed objects.

1. Introduction

We are interested in tasks in which, given a single in-
put image, we seek to “explain” it with bits and pieces of
similar images taken previously, while detecting an inter-
esting novel object that was not seen in prior images (Fig.
1). Locating objects within an image that might be of inter-
est to a human is a very hard, severely under-specified task,
yet it is something that we want our computers to be able to
do. If we know what the person is looking for, then that task
becomes quite a bit easier — many reasonably successful de-
tectors exist for several classes of objects, such as cars and
faces. However, what if the person is just looking for some-
thing “unusual” or “interesting”. While low-level saliency
methods can sometimes predict where a person might want
to look, this rarely correlates with actual objects.

Movement has often been used as a way to detect in-
teresting objects. Not only does movement gives out the
boundaries of an object, but the very fact that it can change
position indicates that it is worth paying attention to. In
the context of a stationary camera, many approaches ex-
ist for detecting moving objects based on background sub-
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Figure 1. Given a single input image (a), we are able to “explain”
it with bits and pieces of similar images taken previously (b), so
as to generate a faithful representation of the input image (c) and
detect the novel object (d).

traction variants (e.g., [13, 18, 22, 27]). This type of ap-
proaches has been most popular in surveillance scenarios
where the objective is to detect new or anomalous patterns
that have not been observed in the environment. How-
ever, this line of work has been heavily restricted by the
dependence on the availability of stationary cameras cover-
ing the entire surveillance area, and continuously observing
the foreground/background in order to generate a spatial-
temporal background model.

The scenario that we are interested in this paper is to
detect interesting objects within a known environment, but
without relying on continuous observation of the environ-
ment by a dense set of cameras. Instead, we assume that we
have a large amount of unordered images taken of the envi-
ronment over a long period of time. One particular scenario
is a mobile robot platform that can move around in an envi-
ronment and capture images of its surroundings sparsely in
spatial-temporal space. The goal of this work is to enable
the detection and segmentation of interesting objects (“ob-
ject pop-out”) in new images of the environment. In this
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context, an interesting object is defined as one that has not
been seen in the previously recorded images.

The core operation in our approach is image matching:
given a new image, we search through the database to find
similar images of the same location, and use this infor-
mation to detect what has changed. This approach is in-
spired by the host of non-parametric scene matching meth-
ods that have recently become popular for mining large-
scale datasets [8, 11, 24]. However, the fundamental dif-
ference is that these methods are only able to match a sin-
gle whole image, so their performance can be only as good
as their best match. And, in fact, their performance suf-
fers tremendously for cases when good matches cannot be
found. This is an important issue for our task since, on the
one hand we need very good correspondences, but on the
other hand, we are not likely to find images taken at exactly
the same viewpoint, no matter how large our dataset is.

Instead, we propose to explain the input image as a com-
posite of different pieces of images from the dataset, after
applying the appropriate transformations. This will allow us
not only to have a very faithful representation of the input
image (Fig. 1c), but also let us be able to pop-out objects
that are new or that have moved within the environment
(Fig. 1d).

Given a database of pre-captured images of a particular
large-scale environment, our approach is composed of the
following steps: 1) image indexing and matching; 2) im-
age alignment for composition element generation; and 3)
image composition and outlier detection (see Fig. 2).

First the image database is indexed off-line for efficient
retrieval. Given a new input image, a small set of simi-
lar reference images are retrieved. From these images, we
perform image alignment to find all the reasonable transfor-
mations that could potentially warp the reference image to
replicate the input image. For each reference image, mul-
tiple transformation proposals are generated. All of these
proposed transformations are recorded as image composi-
tion elements.

The image composition step uses these proposals to ex-
plain the input image as a combination of different compo-
sition elements. The regions of the image that cannot be ex-
plained by any of the elements are declared outliers. These
“popped-out” objects are the objects of interest.

The Photomontage and related work [1, 3] are most re-
lated to our work, in that they also use a stack of similar im-
ages to create a new composite image. However, the main
goal of [1] is to create a composition that is visually bet-
ter than any of the original ones and it has a lot of man-
ual intervention (it is mainly an artist’s tool). [3] uses only
one reference image and assumes that the location of input
paired images is known. One of our baseline algorithms is
an adapted version of [3].

Multiple composition sources have also been used in [5]
to detect novelty in the images. However, the problem they
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Figure 2. Processing diagram.

are solving is very different. They define irregularities as
image patches that are different from other patches in the
database (e.g., an apple in a field of oranges), while do
not have any notion of scene geometry. Therefore, on our
database, their algorithm will flag all objects seen from a
different viewpoint as new, but miss all objects that have
been simply moved.



Figure 3. Data collection rig.

2. Our Approach
2.1. Dataset Acquisition

We build our database by using a fully-automated data
collection rig. It uses an off-the-shelf iRobot roomba robot
kit with a digital camera (Fig. 3). The robot explores
the environment (the entire floor of an office building) au-
tonomously, capturing still photographs approximately ev-
ery 20 seconds. Data was captured over a year, with the goal
of covering as much area and variance of the environment
as possible. As a result, the whole database is composed
of around 9, 000 images, and it contains information about
what is usual for that environment and what is not.

2.2. Image Matching

Given an input image, we want to efficiently find a set
of images that capture the same scene at the same location.
Because within a typical indoor environment, things tend
to be very self-similar and can be easily confused with one
another, features for coarse scene recognition like the Gist
[17] are not appropriate for this problem. Instead, we prefer
features that are distinctive and robust to scale and view-
point change. For this purpose, the combination of Hessian
Affine (HESAFF) [14] region detectors and the SIFT [12]
has shown superior performance with respect to distinctive-
ness and repeatability across view changes [15]. In search-
ing for similar images from large databases, the analogy
of images to text documents has introduced bag-of-words
model and the use of text retrieval approaches in efficient
image retrieval [9, 20]. Recently multi-level vocabulary
trees [16] have been used for image retrieval to give an effi-
cient way of searching for exact matched objects. Here, we
learn a vocabulary tree with a fan-out factor of 4 and depth
of 9 from a random sample of features in the database.

2.3. Image Alignment

For each matched image, we generate a number of im-
ages that are warped by homography transformation so as
to align with the input image. Each of the warped image
is called an image composition element (e.g., Fig. 2), used
as input to the later image composition step. For that pur-
pose, we use an iterative RANSAC based alignment algo-

rithm [4, 25]. For each input/reference image pair, our im-
age alignment algorithm takes NN initially matched feature
points as input. It fits a homography transformation model
using the RANSAC algorithm, which finds NN; inliers and
N, outliers, with N = N; + N,. We initialize with all
candidate matched features and recursively call the image
alignment process using the matching outliers determined
in previous rounds, until we have less than a certain number
of matched feature points, or a maximum number of itera-
tions is reached. In our experience, we found that using at
least 30 initial matching points and at most 10 iterations
gives the best balance of matching quality and computa-
tional efficiency. Also, we require a successful alignment
to have at least 20 inliers. Using the aligned reference im-
ages, we generate a pool of image composition elements. In
summary, the iterative RANSAC approach has three major
benefits.

First, it filters out mis-matches from the image matching
step. Because the bag-of-words model in the image match-
ing algorithm discards all geometric information, it is very
possible that the returned images have features which are
visually similar to the input image, but are taken at different
locations. They will be detected and removed by enforcing
the geometric consistency through RANSAC homography
estimation.

Second, a typical indoor environment could be approx-
imated by multiple planes, and thus a single homography
cannot satisfy all of the constraints. The iterative alignment
algorithm works well in this scenario, in the sense that it
finds all possible homography transformations between the
input image and each matched database image.

Third, it makes the algorithm more robust to scenes with
cluttered objects, e.g., the plants in Fig. 1. In this case, a
large number of features are clustered in a small area. When
RANSAC is applied, the cluttered object will have the most
inliers of features, and homography transformation will be
severely biased, if only one transformation is allowed.

In the literature, most successful work in image align-
ment and stitching use a single homography transforma-
tion, they are only able to work for images with planar
scenes [7, 19, 23]. Another set of techniques do motion
estimation using optical flow. While this works reasonably
well in videos, it is only capable of small displacements,
and is not applicable for our data.

2.4. Multilayer Image Composition

First, we focus on generating the composition of the
input image using composition elements from the image
alignment step. We denote the input image I, the set of im-
age composition elements R., and the target composition
image I;. At each pixel location p, the target image pixel
pq 1s a copy of one of the reference image pixels p,., where
r € {1,--+,|Re|}. This is described in the following way,



Figure 5. Comparing foreground (red) and background (blue) with
statistics of minimum difference between input image and refer-
ence images.

Re
P = Zp,.d(lp —r) (1)
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The primary goal of image composition is to find a la-
beling (l,,) that generates a target composition which is vi-
sually as similar as possible to the input image. In addition,
preserving neighborhood relationships is also important for
visual consistency. We use a pairwise neighborhood con-
straint which penalizes any changes of labels between two
neighboring pixels. Also, we apply another smoothness
constraint which penalizes change of neighboring labels in
uniform areas.

To solve this optimization problem, we build a graph
G = (N, A) to represent our target image I;. N is the
set of nodes, each of which corresponds to a pixel p;, and A
is the set of arcs which connect neighboring nodes. In our
model we use a 4-neighborhood system.

Our labeling optimization problem is now formulated as
minimizing the following energy function:

E=) Eilp)+a )y Exp,a)+8 ) Esp,q), 2
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where I; measures the unary energy (i.e. data term)
coming from pixel-wise difference, and E5, E5 are both
pair-wise term that preserves neighborhood structure. Find-
ing the global minimum of this energy function is an N P
hard problem. But the local optimal solution could be effi-
ciently computed via the graphcut algorithm [1, 2, 3, 6, 10,
26].

2.5. Image Composition with Object Pop-out

We approach this object pop-out problem in a unified
composition framework by introducing an extra “outlier”
layer. Instead of assigning every target pixel a reference

pixel, the algorithm has the option to decide that some pix-
els are beyond the representation power of the reference im-
age and therefore could be potentially outliers, correspond-
ing to the object that we want to pop-out. We model this
outlier probability through an inlier-outlier model. The fi-
nal decision of each target pixel’s label is made through the
graphcut optimization that combines both pixel-wise local
information and neighborhood information. By denoting
the outlier label as label 0, the range of [, in (1) becomes
lp € {07 L2, |Re|}

The algorithm is given a set of training samples, each
of which consists of an input image with some known new
objects and a set of reference images without the objects. If
an object from the input image has not been changed, then
we should be able to find its correspondence in at least one
of the reference images. Therefore, we use the minimum
distance between an input image and the reference images
as our feature. Fig. 5 shows the probability density function
of this feature for the inlier (“background”) and the outlier
(“foreground”) classes, respectively. Specifically, we use
the L, distance in CIELab color space.

For an input pixel p; and corresponding pixel p, in a
reference layer, r € {1,2,---,|R.|}, the Ly distance in
CIELab space is d(p;, pr), denoted by d%.. We can fit this
distance to our probabilistic inlier-outlier model. Instead
of using image pixel color difference directly [3], we learn
through training data the compatibility of p; and p, as the
following cumulative likelihood:

Ci(i,r,p) = P(d > d |Inlier), 3)
and
Co(i,r,p) = P(d < d |Outlier). 4)

An example of this conditional probability is shown in Fig.
5. The more similar the corresponding pixels are, the higher
Ci(i,r,p) and lower Co(i,r, p) will be.

Denoting the minimum distance between a pixel in the
input image and the corresponding pixels in all the reference
images as:

()= R gy B ©
we can calculate the likelihood that this pixel is an inlier as
Ci(i,p) = P(d > dp, (i, p)|Inlier), (6)

and also an outlier as
Co(i,p) = P(d < dn(i,p)|Outlier). @)
The unary term energy for labeling a target pixel as one

of the layers r € {0,1,2,-- | |R.|} is defined as

Eu(p) = Z maa )WL) ®)
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Figure 4. (a) Pixel-wise precision-recall curve comparing our method with three baseline algorithms; (b) Detection hit/miss precision-recall

curve comparing our method with three baseline algorithms.

In our experiment, we define W (7, p) as a data-dependent
parameter:

. _ Cl(lvp)
W(Z,p) = m (9)

W (i, p) could also be a user-controlled parameter. Higher
values of W (4, p) lead to higher precision and lower recall.
In fact, we use W (4, p) in this way as a control variable in
our numerical evaluation in order to generate the precision-
recall characteristic curve. Although empirically we find
that the data-dependent form as in (9) performs slightly bet-
ter and does not require user tuning.

The first pairwise smoothness energy term is defined as:

Es (p> CI) =1- 5(lp - lq)7 (10)
apg€A

which penalizes any change of labels at neighboring pixels.

We further emphasize the smoothness constraint based
on the gradient of the input image by introducing the second
smoothness energy term as:

By (p,q) = (1 -6, —1g))e” V@I (11)

Apq €

where V,,(p) is the input image gradient along the direc-
tion of the arch a,,. Since we are using a 4 neighborhood
system, this only penalizes changes of labels in the image
row and column directions, especially at uniform regions.

After the objects are popped out, one may want to fill
in the holes and generate the composition of the complete
scene. There are various ways to do that under our frame-
work. In this paper, we choose to fill in the missing por-
tion using the reference image that covers the hole and re-
quires the least scale, rotation and translation transforma-
tions based on our homography estimation.

3. Experimental Results

In this section we compare our proposed approach to
four baseline algorithms. Our database is composed of
about 9,000 1728 x 1152 images. For computational ef-
ficiency we down-scale the images to 640 x 427 during the
image matching step. We noticed that the image matching
quality decreases dramatically if the resolution is reduced
further. After the composition elements are generated, we
use a lower resolution of 320 x 214 in the graphcut optimiza-
tion, since normally there are a large number of reference
images to choose from, e.g., 50 to 100. The testing dataset
is composed of 56 images with objects that are new or that
have changed compared to the database images. Results are
reported through 10-fold cross validation, and at each round
we randomly select 30 images as training samples and we
use the remaining images for testing. Graphcut parameters
(o, ) were tuned once using 10 sample images from the
testing dataset and then kept fixed through the testing. At
each round, we estimate from the training images the distri-
bution of the minimum difference between foreground and
background pixels as shown in 5.

We use four baseline algorithms for comparison. For a
fair comparison, we use reference images that have been
aligned to the input image by using our image alignment
algorithm. We measure the similarity of the input image and
a reference image by how many feature points are matched
between them, after the image alignment step. The baseline
algorithms are:

e | nearest neighbor background subtraction compares
the input image with the best matched reference image.
For each pixel p; in the input image, its corresponding
pixel p, is looked up from the reference image and the
difference between them is calculated in CIELab color
space. Then a threshold is used to determine which
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Figure 6. Some qualitative examples of our approach working under various locations of the large office environment, popping out objects

that are new or changed at various size, shape and illumination condition.

part of the scene has changed. By changing this thresh-
old, we can vary the characteristic of our detector. This
is in fact a simplified version of [3]. The major differ-
ence is that in [3], 1) the goal was registering pairs

of images; 2) the location of input paired images is
known, while we propose a framework that uses im-
age matching to search through a large-scale database
(Sec. 2.2); 3) instead of showing only a few qualitative



images as in [3], we carried out large-scale quantitative
experiments; 4) [3] formulates the disparity in funda-
mental matrix, and we found that when more reference
images are available the performance improves signif-
icantly, and a simpler homography model is sufficient.

o K nearest neighbors (KNN) background subtraction is
similar to the first baseline algorithm, with K reference
images instead of one. The minimum distance between
each pixel in the input image and corresponding pixels
in reference images is calculated, and the ones greater
than a threshold are detected as changes. Choosing
K = 3 gives us the second baseline for comparison.

o K = ALL nearest neighbors. Extending K to the
number of all matched images gives us the third base-
line algorithm. The difference between this base-
line and our approach is that it does not use fore-
ground/background models and spatial constraints.

e Mean image subtraction. The mean of many matched
images could be viewed as a background model for the
environment captured by the input image. The differ-
ence between the input image and the mean image can
then be used to detect changes in the scene. Here, we
generate the mean image from the entire set of aligned
reference images, and the pixels with difference higher
than a threshold are output as changes.

The control variable for our approach is a uniform prior
weight W in (8), higher values of W favor higher preci-
sion and lower recall. The first performance measure we
use is a pixel-wise precision and recall. It measures how
many pixels are correctly classified. We observe from Fig.
4(a) that using more reference images and adding back-
ground/foreground, spatial constraint help in boosting the
performance.

In the second performance measure, a result is counted
as a correct detection if the area of the intersection of the de-
tected region and the ground-truth object region is at least
50% of each of them. By measuring how well the detected
region matches the object, this measure is stricter in that
it penalizes heavily algorithms that detect groups of small
patches scattered across the whole image, which is the case
for all the baseline algorithms that do not use neighborhood
information. Also note that the precision goes to zero for
all three baseline methods when using the second measure,
it is because that when we continue increasing the detection
threshold, none of the output regions are correct (zero pre-
cision, zero recall), i.e. if a weak detector (in our case, the
baseline methods) predicts N detections and all are false
alarms, it has zero precision, zero recall.

In Fig. 6 and 7 we show more qualitative examples of
our approach at different locations of the office environ-
ment, popping out objects that are either new or changed
with various sizes, shapes and illumination conditions. Fig.
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Figure 8. Our approach fails when the input image has illumination
that is dramatically different from the database images.

8 shows a typical failure case of our algorithm when the
input image has illumination that is dramatically different
from the database images.

4. Conclusions

We proposed a data-driven framework for novel object
detection and segmentation, or “object pop-out”. We detect
novel objects in the scene by using an unordered, sparse
database of previously captured images of the same general
environment. We demonstrated the effectiveness of our ap-
proach in detecting changed objects, as well as providing
faithful representation of the background. There are sev-
eral limitations in our current approach that we would like
to strengthen further. First, our color based feature can be
strengthened further on its robustness to large illumination



changes. Second, in our current system, temporal informa-
tion is not explicitly used, which could be useful in deter-
mining the order of the environment changes. Also, it will
also be of interest to apply our approach to outdoor scenes,
such as community image datasets [21].
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