
 

 

Abstract 
This paper describes an automated method for creating 

accurate 2D floor plan models of building interiors. Our 

approach takes as input a 3D point cloud, which is obtained 

from laser scanners positioned at multiple locations in the 

facility. We use a histogram of height data to detect floor 

and ceiling data. We then project the remaining points onto 

a 2D ground plane and create a histogram of point density, 

from which line segments corresponding to walls are 

extracted using a Hough transform. Openings due to doors 

and windows arise implicitly from the modeling process. 

Our algorithm operates in unmodified, cluttered 

environments. We also propose a set of evaluation measures 

for objectively measuring floor plan modeling algorithm 

performance. Finally, we propose strategies for mitigating 

the effect of clutter through strategic selection of 

cross-sections containing minimal clutter. Our experiments 

on data from a 40-room school building achieve promising 

results.  

1. Introduction 

The creation of blueprints of the existing conditions of 

buildings and other facilities is a common task in the 

Architecture, Engineering, and Construction (AEC) 

domain. Since the actual “as-built” condition of a building 

can differ from the original plans – due to undocumented 

renovations, for example – it is often necessary to measure 

the as-built condition of a facility, even if the original 

blueprints are available. Predominantly, such as-built 

facility models are created using surveying methods and 

manual measurements.  

Recently, laser scanners have begun to be utilized for 

as-built facility modeling, but the current practice for 

creating such models using laser scanners is still largely a 

manual process. In this paper, we propose a method for 

automatically transforming the three dimensional (3D) 

laser scanner measurements into a top-down floor plan 

model of a facility (Figure 1). 

In current practice, creating a model of a facility using 

laser scanners involves three steps – data collection, data 

registration, and modeling. In the first step, laser scanners 

are placed at strategic locations throughout a facility, and a 

set of scans is obtained. Each scan consists of a set of 3D 

points, known as a point cloud. Next, the point clouds are 

aligned in a common coordinate system, and the data is 

cleaned up through filtering operations to remove noise, 

moving objects, or other clutter. Finally, in the modeling 

step, geometric models corresponding to walls, floors, 

ceilings, columns, and other structures are extracted from 

the registered point cloud. The resulting model may be 3D 

or 2D, depending on project requirements. For floor plan 

models, it is convenient to perform the modeling using 2D 

cross-sections of the data. Commercial software packages – 

either from independent developers or bundled with laser 

scanner hardware – support this as-built modeling process, 

but it is a manual and time-consuming operation. Human 

modelers may take several months to produce an as-built 

model of an average-sized office building, and the resulting 

models usually contain geometric errors. 
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 (a) (b) (c) 

Figure 1. Automated floor plan modeling. Given a 3D point cloud of a facility (a), the algorithm seeks to automatically extract an 

accurate 2D floor plan model (i.e., top-down view) suitable for use in creating blueprints (e.g., ground truth shown in (c) inset). Our 

approach uses a Hough transform to extract line segments corresponding to walls from a histogram of point densities in a ground 

projection (b). The resulting floor plan model is shown in (c). 



 

 

Our goal is to develop tools and algorithms that can 

automate this modeling process. In this paper, we 

concentrate on the 2D modeling of building interiors. 

Specifically, we focus on accurate floor plan modeling of 

wall structures, as would be needed for blueprints. We 

assume that the point cloud data for the facility has already 

been collected and the individual point clouds registered. 

This registered point cloud serves as the only input to our 

algorithm. We also assume that the direction of gravity (i.e., 

the vertical direction) is known, which is generally the case 

with terrestrial laser scanners. 

One of the main challenges to automating the as-built 

modeling process is handling clutter. Clutter is any 3D data 

that should not be included in the output model, including 

furniture, light fixtures, and interior decorations. Any 

modeling algorithm needs to be capable of functioning in 

cluttered environments, as it is often impractical to remove 

furniture and other clutter objects prior to data collection. 

Our approach for floor plan modeling is based on the 

observation that when the 3D points are projected onto the 

ground plane, the projected point density is usually highest 

at wall locations (Figure 1b). Consequently, we begin by 

creating a 2D histogram of points projected onto the ground 

plane. Linear structures are then extracted from this 

histogram using a Hough transform. This idea is simple, 

straightforward, and works fairly well in practice. The 

challenge is that extensive clutter in real environments 

means that the wall structures may not always be readily 

visible within this histogram projection. We observe that 

clutter is not necessarily the same at all heights, and we 

propose strategies for determining the best choice of 

cross-section location (or locations) to use. It should be 

noted that this method is limited to modeling vertical, 

planar walls. The extension to non-planar and non-vertical 

walls is a subject of future work. 

The contributions of this paper are threefold. First, we 

designed, implemented, and evaluated a novel method for 

automatically modeling vertical wall structures from 3D 

point clouds. Second, we developed several measures for 

evaluating the accuracy of floor plan modeling algorithms. 

To our knowledge, there are no accepted methodologies for 

objectively evaluating such algorithms. Third, we put 

forward the concept of strategically choosing cross-sections 

from a 3D model to optimally extract the salient objects 

(e.g., walls) while being minimally impacted by clutter. 

2. Related Work 

Floor plan modeling has been well studied in robotics 

research, since 2D maps of building interiors are often 

needed for robotic navigation tasks. Often, the maps are 

generated by robots, equipped with laser scanners, moving 

through the environment, which adds the additional 

challenge of addressing robot localization. Generally, the 

maps produced by prior work do not aim to be highly 

accurate or complete, at least not to the degree needed for 

blueprints. Floor plan mapping methods can be divided into 

two broad categories: 3D methods and 2D methods. The 3D 

methods first model walls in 3D and then generate a floor 

plan from a cross section of the model, whereas the 2D 

methods only operate in a horizontal 2D plane and usually 

use a laser line scanner. 

A wide variety of methods have been proposed for 

detecting and modeling planar surfaces in 3D laser scan 

data. Example approaches include bottom-up region 

growing using surface normals [3], brute-force plane-sweep 

search [1, 5], hypothesize and test using the random sample 

consensus (RANSAC) algorithm [8], Hough transforms 

[10], and probabilistic methods based on the expectation 

maximization (EM) algorithm [11]. These methods solve a 

more complex problem than floor plan modeling and tend to 

be computationally demanding, due to the extremely large 

number of 3D points involved. 

The 2D methods address this complexity by operating 

only on a horizontal slice of the environment. Typically, a 

horizontally mounted laser line scanner is used to obtain 

measurements, and piecewise-linear models are fit to the 

resulting data. Various modeling methods have been 

proposed, including RANSAC, iterative end point fitting 

[2], split and merge [7], and the Hough transform [4]. 

Nguyen et al. offers a good comparison of these methods [6]. 

While less computationally demanding than their 3D 

counterparts, these methods have the disadvantage that they 

generally use data from laser scanners mounted close to the 

ground. Wall data at this height is more likely to be 

obstructed by furniture and other clutter (see Section 5.3). 

Our approach takes the benefits of both the 3D and 2D 

approaches. Since we use the full 3D laser scan data as 

input, our method is not constrained to use a single 2D cross 

section, but since the bulk of our modeling is performed in 

2D, it is more computationally efficient. Wulf et al. take an 

approach similar in spirit to ours [12]. Rather than use 

ground plane projection density to determine likely walls, 

they assume the farthest point from the sensor in any 

vertical scanline is a wall point. This is followed by a sliding 

window line extraction. 

Most evaluation of floor plan maps is qualitative, as in 

[9], and rarely quantifies the correctness of a line segment 

map. An evaluation metric was proposed in Nguyen et al. 

for comparing line sets, but it does not take into account the 

amount each line segment overlaps another, only that a 

known segment has a detected segment associated with it 

[6]. It also does not take into account the over segmentation 

of lines or penalize overlapping line segments. These 

limitations motivate the need for a more comprehensive 

evaluation methodology. 



 

 

3. Floor Plan Modeling 

Our floor plan modeling algorithm involves three steps. 

First, the ceiling and floor are estimated and the 

corresponding points are removed from consideration. 

Next, the remaining points are discretized into a voxel space 

and projected onto the ground (x-y) plane to form a 2D 

density histogram. Finally, planar segments are extracted 

from this density histogram to form the floor plan model. 

Post-processing operations clean up the model and improve 

the fit to the data. The next several sub-sections describe 

these steps in detail.  

3.1. Floor and Ceiling Removal 

Just as the projection onto the x-y plane is well suited for 

finding vertical surfaces, the projection onto the vertical (z) 

axis is useful for finding horizontal surfaces. Observing that 

that most floors and ceilings are primarily horizontal, we 

create a height histogram by projecting the 3D 

measurements onto the z axis (Figure 2). Rather than 

directly projecting the points, though, we first discretize the 

points into a 3D voxel space with square voxels (10 cm in 

our experiments). Each occupied voxel contributes the same 

increment to the histogram regardless of the number of 

points that fall into the voxel. This voxel-based method 

ensures that the histogram measures surface area, rather 

than the raw number of points. Counting the points directly 

would bias the histogram toward densely sampled regions 

lying close to the scanner or where measurements from 

multiple scans overlap. An alternative approach would be to 

explicitly estimate the data density at each measured point 

and weight the point contributions by the inverse density, 

but the method we adopted is simpler and achieves the same 

effect. 

In the height histogram, the bottom-most and top-most 

local maxima are identified as the floor and ceiling height 

respectively. The corresponding points are marked 

accordingly and are not used for wall detection. This step is 

not strictly necessary, though, since the contribution of the 

floor and ceiling is distributed evenly across the entire 

facility. The floor and ceiling heights are also useful for 

strategically selecting which cross sections to be used in the 

floor histogram (Section 5.3). Height histograms can be 

computed either on a per-room basis or for an entire floor of 

a facility. The per-room approach has the advantage of 

being able to handle varying ceiling and floor heights that 

may exist throughout a building, but it requires assigning 

scans to rooms. 

3.2. Ground Plane Histogram 

The 3D point measurements are projected onto the x-y 

plane using a similar method to the height histogram 

generation (Figure 3). The only difference is that the 

projection has two dimensions instead of one. Just as with 

the height histogram, the ground plane histogram is 

generated indirectly by first discretizing the data into a 

voxel space and then counting the occupied voxels above 

each 2D ground cell. 

3.3. Wall Segment Detection 

Walls are detected in the ground plane histogram using a 

Hough transform approach (Figure 4b) [4]. The Hough 

transform is a well known algorithm in computer vision that 

has been shown to be useful for detecting lines and line 

segments in cluttered data. Briefly, a Hough transform line 

detector works by detecting peaks in a configuration space, 

which is two dimensional for lines (orientation and distance 

from the origin). Each pixel in the input data (here, the 

ground plane histogram) could be part of an infinite number 

of lines that pass through that point. This set of lines 

corresponds to a set of points in configuration space. In this 

manner, each point in the input data votes for a set of points 
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Figure 2. The height histogram is a projection of the 3D 

data onto the vertical axis. The large maxima at the top and 

bottom correspond to the ceiling and floor heights. 

Variations in data density at other heights are indicative of 

the degree of clutter at each elevation. 

 
Figure 3. Ground plane histograms are formed by 

projecting voxelized 3D data onto the x-y plane and 

accumulating the occupied voxel count into a histogram. 

The dense regions indicate vertical surfaces, which have a 

high probability of being wall segments. A histogram for a 

single room is shown here. Figure 1b shows an entire floor. 



 

 

in configuration space. A peak in configuration space 

corresponds to a line in the input data, since each pixel in 

that line votes for the same point in configuration space. 

Analysis of the line’s region of support in the data is used to 

determine the endpoints of the line segment. 

There are two common variations of Hough transform 

line detection. The first approach is to detect all line 

segments at the same time by detecting the largest peaks in 

configuration space (parallel approach). The second 

approach is to incrementally detect lines by first finding the 

strongest peak, estimating the corresponding line segment, 

and then removing the underlying data from the ground 

plane histogram and from the configuration space 

histogram. The process is then repeated until a stopping 

criterion, such as the number of lines or a threshold on line 

strength, is reached. This iterative approach is somewhat 

slower, but has the potential to perform better because small 

line segments are sometimes influenced by larger nearby 

line segments. We investigated these variations, as well as 

the effects of the various parameters of the Hough transform 

algorithm, in our experiments (Section 5). 

We found, experimentally, that the Hough transform 

algorithm performs better if the ground plane histogram is 

filtered to remove cells that are not very dense (Figure 4a). 

In our implementation, the threshold is set at two standard 

deviations (σ) above the mean histogram density. 

3.4. Dominant Orientation Processing 

The walls of many facilities lie along dominant 

orientations that are perpendicular to one another. These 

dominant orientations can be automatically detected and 

then used to improve the floor plan models. The dominant 

orientations are estimated from the peaks in the distribution 

of wall orientations found by the wall detection algorithm 

(Figure 4c). One dominant orientation is located at the 

largest peak, and the secondary orientation is the largest 

peak near the perpendicular to the dominant orientation. 

Detected lines with an orientation within a threshold angle 

of one of these orientations can be “snapped” to the 

dominant orientation by rotating them about their centroids. 

4. Evaluating Floor Plan Modeling 

Performance 

We developed a method to objectively evaluate floor plan 

models with respect to ground truth data. We would like a 

performance measure that correlates well with how a human 

would subjectively judge performance. Specifically, a high 

performing algorithm should detect walls where walls truly 

exist and not detect walls elsewhere. In the places where 

walls are detected, the segments should conform to the 

linear segments of the true walls – i.e., they should have the 

same position, orientation, and endpoints. The detected 

walls should not overlap one another unnecessarily, and 

they should not be split into smaller segments than 

necessary. 

Our evaluation measures, which were developed in 

accordance with these goals, consist of two parts. The first 

part measures line detection capability and is based on an 

object detection methodology, while the second part 

measures the modeling accuracy and conciseness.  

Object detection in computer vision is often quantified 

using precision-recall (P-R) curves, in which the precision 

(P = tp / (tp + fp)) is plotted versus the recall (R = tp / (tp + 

fn)) as a function of some tunable parameter of the 

algorithm, where tp, fp, and fn are the number of true 

positives, false positives, and false negatives respectively.  

Given a ground truth floor plan of a facility, we must first 

determine the data association between wall segments 

detected by our algorithm and the ground truth wall 

segments. This step is more difficult than in many other 

object detection problems, like face detection, because it is 

not always obvious which ground truth segment a given 

detected segment is intending to model. We accomplish the 

data association by matching each detected segment with 

the closest ground truth segment whose orientation does not 

differ by more than a given amount. This orientation 

threshold prevents detected segments from being associated 

with almost perpendicular ground truth segments. The 

detected segment is then projected onto the ground truth 

segment along the ground truth segment’s normal direction. 

     
 (a) (b) (c) 

Figure 4. Wall segment detection. (a) The ground plane histogram is first thresholded to remove low density cells. (b) The Hough 

transform is then used to detect lines within this thresholded histogram (green detected lines overlaid onto thresholded data). (c) The 

dominant orientations can be determined from peaks in the distribution of all wall orientations relative to the vector [0, 1]. 



 

 

The overlapping regions of the two segments are associated 

with one another, while any overhanging sections are kept 

as unassociated, since they may be associated with other 

segments of the ground truth model. This process continues 

until all detected segments are associated or are found to 

have no association. A simple example of this data 

association is shown in Figure 5. 

Once the data association is complete, the number of true 

positives, false positives, and false negatives can be 

computed. Rather than counting each segment equally, we 

weight the contribution by the length of the segment. 

Otherwise, the evaluation would more heavily penalize 

short segments. Detected segments that correctly associate 

with a ground truth wall segment count as true positives, 

whereas detected segments that have no association are 

labeled false positives. Segments in the ground truth model 

with no associated detected segment are false negatives. 

Using this method, the true positive count is the total length 

of correctly modeled walls, the false positive count is the 

total length of hallucinated wall segments, and the false 

negative count is the total length of undetected wall 

segments. On the precision-recall curves, precision 

describes the fraction of the detected wall length that is 

actually a wall, while the recall describes the fraction of the 

ground truth wall length that was correctly modeled. 

The precision and recall only provide one aspect of the 

performance of a floor plan modeling algorithm. An 

algorithm can have high precision and recall but still 

produce a relatively poor quality model of the floor plan. 

The second part of the evaluation criteria addresses this 

issue by measuring the accuracy and conciseness of the 

correctly modeled segments. The accuracy of the modeled 

segments is computed in terms of the distance and 

orientation error, while the conciseness is summarized by 

measures of over-segmentation error and overlapping 

segment error. The distance error ( ( )
d i

E s ) for a correctly 

detected segment (
i

s ) is the average distance between the 

detected segment and its associated ground truth segment. 

The overall distance error (
D

E ) is computed as 

 [ ]
1 1

length( ) ( ) / length( ),
N N

D i d i i

i i

E s E s s
= =

=∑ ∑  (1) 

where N is the number of correctly detected segments. 

Weighting by length prevents smaller lines from having a 

larger effect on the error than an equivalent length of longer 

lines. The orientation error ( ( )
i

E s
θ

) for a single segment is 

the angle between the detected and ground truth segments. 

The overall orientation error ( E
Θ

) is computed as 

 [ ]
1 1

length( ) ( ) / length( ).
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i i i
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E s E s sθΘ

= =
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All other things being equal, a model should contain the 

minimum number of wall segments with minimum 

redundancy. These criteria are captured by the 

over-segmentation error and overlap error measures. 

Over-segmentation error (
OS

E ) is computed by counting 

the number of additional segments the detected model 

contains beyond the minimum needed. It is computed as the 

 
 (a) (b) (c) 

Figure 5. Illustration of the evaluation metric on a synthetic example of a simple room. (a) Ground truth walls. (b) Assignment of 

detected walls to ground truth walls. (c) Classification of detection accuracy of ground truth walls. 

 
 (a) (b) 

 
 (c) 

Figure 6. Experimental data. (a) Example data for a single 

room. (b) The manually created 3D model of the facility. (c) 

The ground truth floor plan for the first floor. 



 

 

ratio of the number of detected segments to the number of 

modeled segments. The overlap error (
OL

E ) is computed as 

the total length of ground truth wall surface that is 

associated with more than one detected wall segment 

normalized by the total length of detected walls. 

5. Experiments 

Our experiments use data from a 3D model of a building 

that was manually modeled by a professional laser scanning 

service provider. The facility is a two story school house 

with a basement (Figure 6). It contains a large amount of 

clutter in the form of desks, tables, chairs, bookshelves, and 

wall-mounted objects, making this an unusually 

challenging data set. The building contains 40 rooms – 4 in 

the basement, 23 on the first floor, and 13 on the second. 

The facility was scanned using a laser scanner developed 

by the service provider, which has state-of-the-art 

performance characteristics. Scans from 225 locations 

within the building were obtained, each containing 

approximately 14 million points. Each room contains 

between 1 and 11 scanning locations (average of 5.6). The 

data was registered using surveyed fiducial markers placed 

in the environment, which is the standard method in the 

industry. For our experiments, in order to handle the large 

data sets, each scan was sub-sampled by a factor of 13, 

giving approximately 83,000 points per scan.  

The service provider manually created a 3D model of the 

facility using the methods described in Section 1. Floor 

plans derived from the manually created model serve as 

ground truth for evaluation of our algorithm (Figure 6c).  

We conducted three types of experiments to evaluate our 

floor plan modeling algorithm. The first set of experiments 

(Section 5.1) focused on understanding the effects that the 

various parameters of the algorithm have on overall 

performance. The second set of experiments (Section 5.2) 

compared the batch and incremental variations of the 

Hough transform. The final set of experiments (Section 5.3) 

investigated different strategies for selectively choosing 

which data to use in the ground plane histogram.  

5.1. Parameter Selection 

Our algorithm has several parameters that can be tuned. 

In addition to the previously mentioned threshold on the 

density histogram filter, the Hough transform has a few 

adjustable parameters: the fill gap, which is the minimum 

distance between points that can be included in the same 

detected line, and the minimum line length, which limits 

short line segment detection. We conducted a set of 

experiments to determine the effect of each parameter on 

 
 (a) (b) (c) (d) 

Figure 7. Precision-recall curves for parameter selection experiments: (a) ground plane histogram threshold; (b) Hough transform fill 

gap; (c) minimum line length; (d) slice number. 

 
 (a) (b) (c)  

 
(d) 

Figure 8. Parameter selection. Variations of the ground plane 

histogram threshold for a single room – low, with excess 

detections (a), optimal (b), and high, with missing detections (c). 

(d) Results for the entire 1st floor at optimal settings (F = 0.6642). 

 
Figure 9. The batch Hough transform method is both visually 

and statistically worse than the incremental results in Figure 8 

(F = 0.6263). 



 

 

algorithm performance. Figure 7a, b, and c highlight the 

precision-recall curves for these experiments. The best 

parameter value is computed using the F-measure (F = 

2PR/(P+R)). Based on these experiments, we set the 

parameters as follows: ground plane histogram threshold = 

2.5 σ, fill gap = 0.7 m, and minimum line length = 0.2 m 

(Figure 8). Walls within 5° of the dominant orientation were 

snapped to the dominant orientation. 

5.2. Batch versus Incremental Hough Transform 

Using the methodology described in Section 3, we 

determined the best parameters for the batch Hough 

transform method as well. Figure 9 shows the comparison of 

the batch and incremental methods for one of the 

parameters. The incremental method outperforms the batch 

method, and this trend was found to be true broadly across 

all of our experiments. 

5.3. Selective Ground Plane Histograms 

 The algorithm described in Section 3 computes the 

ground plane histograms using data from every height, 

barring the floor and ceiling data. However, Figure 2 shows 

that the number of points varies significantly as a function 

of height. Since the number of wall points should be fairly 

constant throughout the range, this variation indicates that 

the amount of clutter changes with height. This conclusion 

is intuitive, since some objects, such as tables, occur 

primarily at lower heights in a room, while other objects, 

such as ceiling fans, occur primarily at higher heights. 

Indeed, Figure 10a shows an inverse correlation between the 

number of occupied voxels in a cross-section and the 

precision and recall of that cross-section. 

Based on these observations, we conducted experiments 

to determine whether performance can be improved by 

selectively choosing the height ranges used in estimating 

the ground plane histograms. The first experiment analyzes 

performance as a function of height, while the second 

experiment considers an alternate strategy of selecting 

heights with minimal density in the height histogram. 

For our height experiment, we created ground plane 

histograms using data from a small height interval (0.1 m 

cross-sections) and varied the slice height in 0.1 m 

increments. The results (Figure 10a) indicate that slices 

between 1 and 2.5 meters above the floor perform 

significantly better than those nearer the floor or ceiling. At 

the height of a typical mobile robot sensor, the clutter is 

significant and results in poor floor plans (Figure 10b). 

While some heights are better for modeling than others, it 

is also possible that combinations of heights may provide 

even more benefit because regions where clutter occurs at 

one height may be uncluttered at a different height. Our 

second experiment investigates this possibility by creating 

ground plane histograms from multiple – not necessarily 

adjacent – cross-sections. In the second experiment, we 

ranked cross-section heights in increasing order based on 

the height histogram magnitudes (Figure 10c). We then 

computed the algorithm’s performance using the first N 

cross-sections from this list and then varied the value of N. 

The best results were achieved with N = 9. 

5.4. Discussion 

Figure 11 shows the labeling – analogous to Figure 5c – 

     
 (a) (b) (c) 

Figure 10. Selective choice of cross-section heights. (a) Precision, recall, and voxel concentration as a function of cross-section 

height (0.1 m slices) shows a relationship between voxel concentration and performance. (b) Using data from cross-sections at a 30 

cm height results in poor floor plans. (c) Choosing heights with minimal concentrations (green circles) improves performance. 

 
Figure 11. Labeling of ground truth wall segments according to 

detected wall segment positions. Green and blue segments were 

modeled by the algorithm, while red segments were missed. 



 

 

of the ground truth wall segments according to the detected 

wall segment positions for the optimal parameter settings. 

Computing our evaluation measure (using a 36° orientation 

threshold) resulted in 
D

E = 0.049 m, E
Θ

= 0.705°, 
OS

E = 

0.59, and 
OL

E = 0.265. The results indicate that the 

majority of the walls in large rooms were correctly modeled 

by the algorithm. The walls that were not detected fall into 

three categories: 1) external walls, which were not observed 

by the sensor and are therefore not modeled; 2) small 

storage rooms, which were not scanned entirely and are also 

significantly more cluttered than the large rooms; and 3) 

built in closets (large shallow intrusions on the left sides of 

the three lower rooms). This third category is difficult to 

model, since the doors of the back walls of the closets were 

mostly occluded by objects stored in the closets. The 

stairwells also were not modeled as accurately, mainly due 

to the confusion between railings and walls. 

6. Summary and Future Work 

We have demonstrated an algorithm for estimating the 

floor plan of a facility in terms of the locations of its walls, 

even in the face of substantial clutter. Strategic selection of 

heights for use in the ground plane histogram contributed 

substantially to the improvement in the model quality. We 

also proposed a set of quantitative measures for evaluating 

the quality of a floor plan model with respect to ground 

truth. This quantitative approach could be used by other 

floor plan modeling algorithms to gauge their performance 

improvements and to gauge the difficulty of other data sets. 

In the future, we intend to extend this algorithm to 

explicitly find and model windows and doors. Also there are 

several improvements that can be made to the wall finding 

algorithm. For example, the threshold filter can be replaced 

with a modified Hough transform to take into account 

uncertainty. Also a final pass filter could be used to improve 

the quality of the line set by connecting close lines and 

normalizing angles. 

In the longer term, we are investigating alternative 

methods for floor plan modeling that operate on the data in 

3D, rather than in the 2D projection spaces used in this 

paper. The algorithms in this paper can provide an initial 

hypothesis for such 3D modeling methods. For example, the 

detected walls, floors, and ceilings can be used to give an 

initial label to each 3D point, as shown in Figure 12. 
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Figure 12. Reprojection of detected walls, floor, and ceiling 

onto the original 3D data, each shown in a different color. 

Clutter objects (tables, bookshelves, etc.) are shown in grey. 


