Asymptotically-optimal Motion Planning using lower bounds on cost
Abstract
Many path-finding algorithms on graphs such as A* are sped up by using a heuristic function that gives lower bounds on the cost to reach the goal. Aiming to apply similar techniques to speed up sampling-based motion-planning algorithms, we use effective lower bounds on the cost between configurations to tightly estimate the cost-to-go. We then use these estimates in an anytime asymptotically-optimal algorithm which we call Motion Planning using Lower Bounds (MPLB). MPLB is based on the Fast Marching Trees (FMT*) algorithm [1] recently presented by Janson and Pavone. An advantage of our approach is that in many cases (especially as the number of samples grows) the weight of collision detection in the computation is almost negligible compared to the weight of nearest-neighbor queries. We prove that MPLB performs no more collision-detection calls than an anytime version of FMT*. Additionally, we demonstrate in simulations that for certain scenarios, the algorithmic tools presented here enable efficiently producing low-cost paths while spending only a small fraction of the running time on collision detection.
BibTeX
@conference{Salzman-2017-5635,author = {Oren Salzman and Dan Halperin},
title = {Asymptotically-optimal Motion Planning using lower bounds on cost},
booktitle = {Proceedings of (ICRA) International Conference on Robotics and Automation},
year = {2017},
month = {May},
pages = {4167 - 4172},
}