Fast and Robust Circular Object Detection with Probabilistic Pairwise Voting (PPV)
Abstract
Accurate and efficient detection of circular objects in images is a challenging computer vision problem. Existing circular object detection methods can be broadly classified into two categories: voting based and maximum likelihood estimation (MLE) based. The former is robust to noise, however its computational complexity and memory requirement are high. On the other hand, MLE based methods (e.g., robust least squares fitting) are more computationally efficient but sensitive to noise, and can not detect multiple circles. This letter proposes Probabilistic Pairwise Voting (PPV), a fast and robust algorithm for circular object detection based on an extension of Hough Transform. The main contributions are threefold. 1) We formulate the problem of circular object detection as finding the intersection of lines in the three dimensional parameter space (i.e., center and radius of the circle). 2) We propose a probabilistic pairwise voting scheme to robustly discover circular objects under occlusion, image noise and moderate shape deformations. 3) We use a mode-finding algorithm to efficiently find multiple circular objects. We demonstrate the benefits of our approach on two real-world problems: 1) detecting circular objects in natural images, and 2) localizing iris in face images.
BibTeX
@article{Pan-2011-120784,author = {L. Pan and W. Chu and J. M. Saragih and F. De la Torre},
title = {Fast and Robust Circular Object Detection with Probabilistic Pairwise Voting (PPV)},
journal = {IEEE Signal Processing Letters},
year = {2011},
month = {November},
volume = {18},
number = {11},
pages = {639 - 642},
}