Imaging Sonar-Aided Navigation for Autonomous Underwater Harbor Surveillance
Abstract
In this paper we address the problem of drift-free navigation for underwater vehicles performing harbor surveillance and ship hull inspection. Maintaining accurate localization for the duration of a mission is important for a variety of tasks, such as planning the vehicle trajectory and ensuring coverage of the area to be inspected. Our approach only uses onboard sensors in a simultaneous localization and mapping setting and removes the need for any external infrastructure like acoustic beacons. We extract dense features from a forward-looking imaging sonar and apply pair-wise registration between sonar frames. The registrations are combined with onboard velocity, attitude and acceleration sensors to obtain an improved estimate of the vehicle trajectory. We show results from several experiments that demonstrate drift-free navigation in various underwater environments.
BibTeX
@conference{Johannsson-2010-10567,author = {Hordur Johannsson and Michael Kaess and Brendan Englot and Franz Hover and John Leonard},
title = {Imaging Sonar-Aided Navigation for Autonomous Underwater Harbor Surveillance},
booktitle = {Proceedings of (IROS) IEEE/RSJ International Conference on Intelligent Robots and Systems},
year = {2010},
month = {October},
pages = {4396 - 4403},
}