Locomotive Reduction for Snake Robots - Robotics Institute Carnegie Mellon University

Locomotive Reduction for Snake Robots

Xuesu Xiao, Ellen Cappo, Weikun Zhen, Jin Dai, Ke Sun, Chaohui Gong, Matthew Travers, and Howie Choset
Conference Paper, Proceedings of (ICRA) International Conference on Robotics and Automation, pp. 3735 - 3740, May, 2015

Abstract

Limbless locomotion, evidenced by both biological and robotic snakes, capitalizes on these systems' redundant degrees of freedom to negotiate complicated environments. While the versatility of locomotion methods provided by a snake-like form is of great advantage, the difficulties in both representing the high dimensional workspace configuration and implementing the desired translations and orientations makes difficult further development of autonomous behaviors for snake robots. Based on a previously defined average body frame and set of motion primitives, this work proposes locomotive reduction, a simplifying methodology which reduces the complexity of controlling a redundant snake robot to that of navigating a differential-drive vehicle. We verify this technique by controlling a 16-DOF snake robot using locomotive reduction combined with a visual tracking system. The simplicity resulting from the proposed locomotive reduction method allows users to apply established autonomous navigation techniques previously developed for differential-drive cars to snake robots. Best of all, locomotive reduction preserves the advantages of a snake robot's ability to perform a variety of locomotion modes when facing complicated mobility challenges.

BibTeX

@conference{Xiao-2015-107810,
author = {Xuesu Xiao and Ellen Cappo and Weikun Zhen and Jin Dai and Ke Sun and Chaohui Gong and Matthew Travers and Howie Choset},
title = {Locomotive Reduction for Snake Robots},
booktitle = {Proceedings of (ICRA) International Conference on Robotics and Automation},
year = {2015},
month = {May},
pages = {3735 - 3740},
}