Recognizing multiple objects based on co-occurrence of categories - Robotics Institute Carnegie Mellon University

Recognizing multiple objects based on co-occurrence of categories

Takahiro Okabe, Yuhi Kondo, Kris M. Kitani, and Yoichi Sato
Journal Article, Progress in Informatics, No. 7, pp. 43 – 52, March, 2010

Abstract

Most previous methods for generic object recognition explicitly or implicitly assume that an image contains objects from a single category, although objects from multiple categories often appear together in an image. In this paper, we present a novel method for object recognition that explicitly deals with objects of multiple categories coexisting in an image. Furthermore, our proposed method aims to recognize objects by taking advantage of a scene's context represented by the co-occurrence relationship between object categories. Specifically, our method estimates the mixture ratios of multiple categories in an image via MAP regression, where the likelihood is computed based on the linear combination model of frequency distributions of local features, and the prior probability is computed from the co-occurrence relation. We conducted a number of experiments using the PASCAL dataset, and obtained the results that lend support to the effectiveness of the proposed method.

BibTeX

@article{Okabe-2010-109771,
author = {Takahiro Okabe and Yuhi Kondo and Kris M. Kitani and Yoichi Sato},
title = {Recognizing multiple objects based on co-occurrence of categories},
journal = {Progress in Informatics},
year = {2010},
month = {March},
number = {7},
pages = {43 – 52},
}