Simulation-based analysis of micro-robots swimming at the center and near the wall of circular mini-channels - Robotics Institute Carnegie Mellon University

Simulation-based analysis of micro-robots swimming at the center and near the wall of circular mini-channels

F. Zeynep Temel and Serhat Yesilyurt
Journal Article, Microfluidics and Nanofluidics, Vol. 14, No. 1, pp. 287 - 298, 2013

Abstract

Swimming micro-robots have great potential in biomedical applications such as targeted drug delivery, medical diagnosis, and destroying blood clots in arteries. Inspired by swimming microorganisms, micro-robots can move in biofluids with helical tails attached to their bodies. In order to design and navigate micro-robots, hydrodynamic characteristics of the flow field must be understood well. This work presents computational fluid dynamics modeling and analysis of the flow due to the motion of micro-robots that consist of magnetic heads and helical tails inside fluid-filled channels akin to bodily conduits; special emphasis is on the effects of the radial position of the robot. Time-averaged velocities, forces, torques, and efficiency of the micro-robots placed in the channels are analyzed as functions of rotation frequency, helical pitch (wavelength) and helical radius (amplitude) of the tail. Results indicate that robots move faster and more efficiently near the wall than at the center of the channel. Forces acting on micro-robots are asymmetrical due to the chirality of the robot’s tail and its motion. Moreover, robots placed near the wall have a different flow pattern around the head when compared to in-center and unbounded swimmers. According to simulation results, time-averaged forward velocity of the robot agrees well with the experimental values measured previously for a robot with almost the same dimensions.

BibTeX

@article{Temel-2013-118219,
author = {F. Zeynep Temel and Serhat Yesilyurt},
title = {Simulation-based analysis of micro-robots swimming at the center and near the wall of circular mini-channels},
journal = {Microfluidics and Nanofluidics},
year = {2013},
month = {January},
volume = {14},
number = {1},
pages = {287 - 298},
}