Trajectory Space: A Dual Representation for Nonrigid Structure from Motion - Robotics Institute Carnegie Mellon University

Trajectory Space: A Dual Representation for Nonrigid Structure from Motion

Ijaz Akhter, Yaser Sheikh, Sohaib Khan, and Takeo Kanade
Journal Article, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, No. 7, pp. 1442 - 1456, July, 2011

Abstract

Existing approaches to nonrigid structure from motion assume that the instantaneous 3D shape of a deforming object is a linear combination of basis shapes. These bases are object dependent and therefore have to be estimated anew for each video sequence. In contrast, we propose a dual approach to describe the evolving 3D structure in trajectory space by a linear combination of basis trajectories. We describe the dual relationship between the two approaches, showing that they both have equal power for representing 3D structure. We further show that the temporal smoothness in 3D trajectories alone can be used for recovering nonrigid structure from a moving camera. The principal advantage of expressing deforming 3D structure in trajectory space is that we can define an object independent basis. This results in a significant reduction in unknowns and corresponding stability in estimation. We propose the use of the Discrete Cosine Transform (DCT) as the object independent basis and empirically demonstrate that it approaches Principal Component Analysis (PCA) for natural motions. We report the performance of the proposed method, quantitatively using motion capture data, and qualitatively on several video sequences exhibiting nonrigid motions, including piecewise rigid motion, partially nonrigid motion (such as a facial expressions), and highly nonrigid motion (such as a person walking or dancing).

BibTeX

@article{Akhter-2011-122199,
author = {Ijaz Akhter and Yaser Sheikh and Sohaib Khan and Takeo Kanade},
title = {Trajectory Space: A Dual Representation for Nonrigid Structure from Motion},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
year = {2011},
month = {July},
volume = {33},
number = {7},
pages = {1442 - 1456},
}