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Abstract
In this thesis, we consider the general problem of moving a large number of

networked robots toward a goal position through a cluttered environment under con-
straints on network connectivity and collision avoidance. In contrast to previous
approaches that either plan complete paths for each individual robot in the high-
dimensional joint configuration space or control the robot group as a whole with ex-
plicit constraints on the group’s boundary and inter-robot pairwise distances, we pro-
pose a novel decentralized online behavior-based algorithm that relies on the topo-
logical structure of the multi-robot communication and sensing graphs to solve this
problem. We formally describe the communication graph as a simplicial complex
that enables robots to iteratively identify the frontier nodes and coordinate forward
motion through the sensing graph. This approach is proved to automatically deform
robot teams for collision avoidance and always preserve connectivity. The effective-
ness of our approach is demonstrated using numerical simulations. The algorithm is
shown to scale linearly in the number of robots.
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Chapter 1

Introduction

1.1 Motivation

Networked decentralized multi-robot systems employ local communication and collaborative
decision making to carry out a wide variety of large-scale applications such as search and rescue,
exploration of unknown environments and environmental sampling. The objective of the research
in this thesis is to design a coordination strategy for large groups of robots to navigate in a
cluttered environment. We focus on three challenges that guiding large-scale robot team faces
in real-world application. In the first, the system should be safe, in that the robots should not
collide with one another or obstacles in the environment. In the second, the robots should remain
connected while coordinating. In the third, the coordination strategy should be scalable as the
number of robots in the system increases.

We study the problem of coordinating the motion of a large group of robots towards a goal
region in a decentralized manner through a cluttered environment that contains narrow corridors
and static obstacles, while avoiding collisions and ensuring connectivity. We propose to employ
the topological structure of the multi-robot communication and sensing graphs to compute the
robots’ incremental movements at each time step so as to reduce the navigation complexity.
This allows for interleaving planning and execution that naturally captures the changing graph
topology of the moving robot team and restricts robot movements to preserve connectivity and
avoid collisions in unknown environments.

In this paper, we propose a novel decentralized and behavior-based approach for a large
group of robots moving in unknown environments with obstacles. Our approach deals with all
of the aforementioned challenges at the same time. Inspired by [16] that drives robots for sensor
coverage based on abstract simplicial complexes from algebraic topology [8], we reduce the
dimensionality of our problem by formally describing the communication graph of the robot
team as an abstract simplicial complexes that provides feasible frontier nodes for computing
robots’ incremental motions. In our approach only a subset of the robots move at each time step,
hence the robots form a lattice band formation as is shown in Figure 4.1. The lattice band will
autonomously deform according to the obstacle-filled environment. We prove that (a) the robots
will never lose connectivity or collide with one another or obstacles when moving, and (b) the
motion strategy is robust to insertion and failure of individual robots.
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1.2 Organization
As is introduced in Section 1.1, this thesis focuses on introducing a decentralized coordination
strategy for a large group of robots under various constraints. The rest of this thesis is organized
as follows.

Chapter 2 discusses several existing approaches to multi-robot navigation. In particular, in
Section 2.1 we discuss multi-robot path planning approaches that explicitly solve for the entire
paths for robots. In Section 2.2, we introduce several examples of behavior-based coordination,
which utilizes local interactions between individual robots to maintain safety and connectivity,
and control the entire team as an entity. In Section 2.3, we discuss several recent control barrier
function-based approaches that directly addresses the forward reachability of the system.

In Chapter 3, we introduce necessary background for the methodology discussed in this paper.
In Section 3.1, we introduce basic notation to represent a multi-robot system and our assump-
tions on the robot model and environment. Section 3.2 introduces the definition of an abstract
simplicial complex, especially the Vietoris–Rips complex which plays an important role in the
methodology introduced in this thesis.

Chapter 4 presents the skeleton of our coordination strategy to navigate a large team of robots.
To make it easier to understand, we present the centralized version of our strategy, and leave
the decentralized framework for Chapter 5. Chapter 4 focuses on the underlying theory and
theoretical proof of our strategy. We prove that the system is guaranteed to be safe and maintain
connectivity while coordinating.

In Chapter 5, we present a decentralized framework for our coordination strategy. We di-
vide our strategy into several sub-problems (stages) discussed in Chapter 4, and develope an
asynchronous decentralized algorithm for each of the stages. We show correctness of the decen-
tralized algorithms.

Chapter 6 shows simulation results of the proposed strategy navigating a large team of robots
in cluttered environment. Quantitative data such as computational time, number of messages,
and number of steps to achieve the goal are compared and discussed. In Chapter 7 we present
conclusions.
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Chapter 2

Related Work

There has been extensive work on navigating multiple robots from an initial to a final region.
The approaches discussed in literature can be roughly classified into three group: planning-
based coordination, behavior-based coordination, and barrier function-based coordination. In
this chapter, we will discuss the advantages and limitations of the three groups of approaches
respectively.

2.1 Planning-based coordination

There are a wide range of planning based approaches which seek to navigate multiple robots
from start configurations to goal configurations. Typically, these approaches explicitly give a
path for each of the robots from pre-defined starting configurations to a goal configuration.

Planning based approaches can be generally divided into coupled planning [3, 7, 14, 15,
19] and decoupled planning [5, 6, 10, 20]. A coupled planning approach [3, 7, 14, 15, 19]
plans in the high dimensional joint configuration space of a system. As coupled approaches
can potentially find all possible solutions, they usually provide strong optimality guarantees.
However, a downside of these approaches is that the complexity of algorithm grows exponentially
as the number of robots increases.

A decoupled approach plans in one or more lower dimensional configuration spaces. For
example, there is a extensive work on prioritized planning [5, 6, 10, 20]. In this approach, robots
sequentially plan paths according to a prioritization function. The prioritization function is based
on heuristic. In [20], the authors develop decentralized prioritized planning algorithms which
are scalable to a group of hundreds of agents. Since planning is conducted in low dimensional
space, these approaches exhibits decent scalability. However, there are few guarantees on quality
or optimality of the solution.

To gain the benefits of both coupled and decoupled approaches, Wagner et al. [21, 22] de-
velop a search approach with sub-dimensional expansion. The search is initially done in the
configuration space of an individual robot. Then collisions are detected and local dimensionality
of the search space is increased to find a feasible plan. The approach is proven to be complete
and optimal.

The planning-based approaches are either centralized or require a star-shaped communication
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graph, which is not realistic for large groups of robots.

2.2 Behavior-based Coordination
There is a group of behavior-based coordination approaches which uses swarm behavior such
as consensus flocking, formation control or shape control to maintain safety and connectivity,
and controls the multi-robot system as an entity. For example, For example, repulsion when
robots get close to one another is designed to prevent robots from colliding, attraction when
robots get far from one another is designed to prevent robots from being disconnected, while
a gradient-based controller is typically used to drive the robots to a goal region. Other work
seeks to preserve these properties by letting robots move in a certain formation. Among these
works, quasi lattice formation, where the robots maintain almost the same distance away from
each other, is widely used, because the safety and connectivity are implicitly considered in this
formation. Decentralized controllers are proposed in [1, 13] to maintain a quasi lattice formation.
But most prior work only presents results for obstacle-free environments or environments with
sparse point-like obstacles, because maintaining a formation is very challenging in cluttered
environments. However, since the control output of a behavior controller is finite, there is no
safety or connectivity guarantee for the system. Moreover, in the presence of obstacles, merging
these conflicting constraints into a single framework could easily lead to deadlock when guiding
a large number of robots through a narrow corridor as mentioned in [2].

In order to reduce the dimensionality of path planning for multi-robot systems, [4] introduced
abstraction of groups of robots using shapes such as bounding box and concentration ellipsoid,
and proposed a controller to translate, rotate and deform the shape of groups of robots. However,
its assumptions on the robots’ distribution and the ability of shapes to deform indicates that
robots are considered as particles without physical bodies. Therefore it fails to consider real
world issues of safety in terms of preventing robot collisions and maintenance of connectivity.

2.3 Barrier-Based Coordination
There is another group of approaches [17, 18, 23, 24, 25] which uses control barrier functions
to provide guarantees on collision-free behavior [24], connectivity maintenance [17] or both
[23, 25]. Some of the approaches use an auxiliary barrier-based controller which is additive
to the original controller [17, 25], while other approaches use optimization based controllers,
and view barrier certificates as a constraint [23, 24]. In both ways, the system is proved to be
collision free and/or preserve connectivity if it is initialized to be so, since the barrier function
directly ensures the forward reachability set of the system lies in the desired region of the state
space.

One downside of these barrier-based coordination methods is potential deadlock that may
happen when different constraints or goals conflict with each other. For example, the goal con-
figuration is not reached in [23] because of the conflict between goal and constraints. Few of
these approaches show results in a complex cluttered environment.
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Chapter 3

Background

3.1 Multi-Robot Systems

Consider a multi-robot system consisting of N homogeneous robots in a cluttered space W ⊆
Rd, where d ∈ {2, 3}. Each robot has its own unique identifier (UID). For simplicity of expo-
sition and without loss of generality, we assume that the robot UIDs are i ∈ {1, 2, . . . , N}. For
each robot i ∈ {1, 2, . . . , N}, the position of the robot is given by qi ∈ W . We consider the task
of moving the robots from an initial position to a region centered at a goal position G.

Figure 3.1: Communication graph and sensing graph of six robots with an obstacle (brown). Note
that the edges in the communication graph (both solid and dashed grey segments) are not the
same as edges in sensing graph (solid grey segments only), since all six robots can communicate
with each other but two of them cannot see each other due to the obstacle.

Each robot is assumed to be equipped with an omni-directional range sensor which can iden-
tify whether a point within its sensing radius Rs is occupied or not. Each robot can also interact
with other robots within its spatial proximity through local communication and sensing. The
communication graph and sensing graph of the multi-robot system are defined as Gc = (V , Ec)
and Gs = (V , Es) respectively, where each node in V represents a robot. Two robots i and j can
communicate if and only if the distance between them is less than or equal to the communication
radius Rc (i.e. ‖qi − qj‖ ≤ Rc ⇔ (i, j) ∈ Ec). Two robots i and j can sense each other (i.e.
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(i, j) ∈ Es) if and only if (1) the distance between them must be less than or equal to the sensing
radius Rs and (2) there is no objects (e.g. obstacles and robots) on the line between robot i to
robot j. We assume that Rc = Rs = R. It is easy to see that (a) both the communication graph
and sensing graph are undirected, and (b) the sensing graph is a subgraph of the communication
graph, due to the possible presence of obstacles that prevent robots from seeing some of their
neighbors (see Figure 3.1).

3.2 Abstract Simplicial Complex

Before discussing the methodologies, we will introduce a basic concept in algebraic topology,
namely the abstract simplicial complex, which plays an essential role in the approach developed
in this thesis.

3.2.1 Abstract Simplicial Complex

Definition 1 (Munkres, 1984, [11]) An abstract simplicial is a collection S of finite nonempty
sets, such that if A is an element of S, so is every nonempty subset of A.

For example, the collection K = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}} is an ab-
stract simplicial complex. Note that different from simplicial complex which has geometric
meaning, abstract simplicial complex is a pure combinatorial description.

Definition 2 (Munkres, 1984, [11]) An element A of S is called a simplex of S; its dimension is
one less than the number of its elements. Each nonempty subset of A is called a face of A. The
dimension of S is the largest dimension of one of its simplices.

Therefore, {1, 2, 3} is a 2 dimensional simplex, or 2-simplex, of K. {1}, {2}, {3}, etc. are
faces of {1, 2, 3}. The abstract simplicial complex K has a dimension of 2 because {1,2,3} has
the largest dimension among all the simplices in K.

Definition 3 (Munkres, 1984, [11]) If L is a subcollection of S that contains all faces of its
elements, then L is an abstract simplicial complex in its own right; it is called a subcomplex of
S. The d-skeleton of an abstract simplicial complex S consisting of all of the faces of S that have
dimension at most d and is denoted by S(d).

Consider the example above, {{1}, {2}, {1, 2}} is a subcomplex of K but not a skeleton.
{{1}, {2}, {3}} is the 0-skeleton of K, which is also called the vertex set of K.

3.2.2 Vietoris–Rips Complex

Abstract simplicial complexes give us a clean representation of the topological structure of a set
of elements, or in our case, robots. However, we still don’t know how to construct an abstract
simplicial complex from a particular configuration of robots. In this section, we will introduce
the Vietoris–Rips complex, an abstract simplicial complex that can be directly constructed from
the communication graph of the robots.
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Definition 4 (Hausmann, 1995, [9]) The Vietoris–Rips complex is an abstract simplicial com-
plex defined from a metric space. Given a set of points in a metric space and distance δ, the
Vietoris–Rips complex is the collection of every finite set of points such that the distance between
any two points in the set is at most δ.

One can easily see that the Vietoris–Rips complex is an abstract simplicial complex. Assume
that A is a set of points in the Vietoris–Rips complex R. This means that the distance between
any two points in A is no greater than δ. Then, for any subset A′ ⊆ A, any two points in A′ has
a distance no greater than δ. Therefore, A′ ∈ R.

The Vietoris–Rips complex represents the topology of the communication graph for the
robots. A k-simplex in a Vietoris-Rips complex R is formed by a subset of (k + 1) robots
where each pair of robots in the subset has distance of at most R, i.e. the communication and
sensing radius. We denote the set of all k-simplices as Rk. It is easy to see that R0 = R(0), and
Rk = R(k) \ R(k−1) for k ≥ 1.

For a d dimensional space, we care about simplices with dimension no greater than d. There-
fore, we are particularly interested in the d-skeleton of the Vietoris–Rips complex,R(d). For the
sake of simplicity, in the rest of this thesis, we will use R instead of R(d), which only contains
simplicies of dimension at most d. Therefore,R = R0 ∪R1 ∪ . . . ∪Rd.

Figure 3.2: Vietoris-Rips complex formed by 10 robots in 2 dimensional space. 0-simplices are
shown as blue points. Gray lines and blue triangles show 1-simplices and 2-simplices, respec-
tively.

Specifically, a 0-simplex is each individual robot; a 1-simplex is constructed between two
robots if the distance between them is less than the communication radius R; a 2-simplex is
formed by a triple of robots that can all communicate with each other. In case of 3 dimensional
space, we will further construct 3-simplices for quadruples of robots in the same manner. For ex-
ample, in Figure 3.2, 0 -simplices (blue points) are formed by each individual robot. 1-simplices
(gray lines) are constructed between two robots if the distance between them is less than the
communication radius R, which is the same as edges in the communication graph. 2-simplices
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(blue triangles) are formed by a triple of robots that can all communicate with each other, for
example, {2, 3, 4}, {3, 4, 5} and {7, 8, 9} .

One advantage of using Vietoris–Rips complex to represent the robot team is that boundary
information can be easily obtained through local computation and communication. The bound-
ary of the robot team is represented as the frontier set, which is formed by the set of all fence
simplices.

Definition 5 In d dimensional space, a (d − 1)-simplex formed by set of points X is a fence
simplex if all the point x′ that form a d-simplex with X are on the same side of the hyperplane
defined by X . A frontier set F is the set consisting of all fence simplices.

For example. in Figure 3.2, {7, 8} is a fence 1-simplex because there is only one point, 9,
that forms a 2-simplex with {7, 8}, while {3, 4} is not a fence 1-simplex because {2, 3, 4} and
{3, 4, 5} are all 2-simplices, and robots 2 and 5 are on different sides of {3, 4}.

As a generalization of frontier set, we further define k-degenerate frontier set as all the k-
simplices that are on the boundary of the Vietoris–Rips complex.

Definition 6 A k-degenerate frontier set Fk is the set consisting of all k-simplices, with 0 ≤ k ≤
d− 2, such that it is a fence simplex when all the points are projected onto a k + 1 dimensional
space.
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Chapter 4

Methodology

Inspired by [16], in our approach, only a subset of robots moves in each step. At each step, a
new desirable unoccupied position, called the frontier node (see Section 4.1) and tail robot (see
Section 4.2) for the robot team is chosen. Subsequently, a path of robots from the tail robot
to the frontier node is found in the sensing graph. Then, a “push” action is performed along
the path, i.e. each robot, starting with the robot closest to the frontier node moving into its
position, moves one position to occupy the forward position along this path that was vacated by
the previous robot moving along the path. By moving in this pattern, most of the communication
and sensing graph do not change each step except for the part associated with the frontier node
and tail robot. An illustration of this motion pattern is shown in Figure 4.1. We assume that both
the communication graph and sensing graph are connected in the initial configuration.

(a) (b)

Figure 4.1: Motion pattern of the robots over sensing graph (grey edges). (a) Frontier node
(grey) and tail robot (robot 15) are chosen. The shortest path from tail robot to frontier node is
15 → 14 → 11 → 13 → 12 → 3 → 4 → Frontier Node. (b) Each robot moves to occupy
the forward position that was vacated by the previous robot moving along the path, with robot 4
moving to the frontier node.
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Figure 4.2: Illustration of centralized framework of our algorithm and organization of this section

In our approach, each robot i has a stepwise goal position denoted as gi, which can be the po-
sition of the frontier note, forward position along its path or same as the robot’s current position.
We assume that there is a low level controller (e.g. PD controller) that can drive the robot to the
stepwise goal position during that step.

We note that since we select the frontier node, tail robot and plan path using an updated
communication and sensing graph at each step, our algorithm is inherently robust to failure and
insertion of individual robots, as well as change of goal position.

There are three key components in our approach: frontier node selection, tail robot selection
and path planning. For the rest of this section, we will introduce our criterion and method for
these three components. We will also prove that with our approach, the robot team can stay
connected and navigate without collision in a static environment.

4.1 Frontier Node Selection

As is discussed at the beginning of this chapter, the frontier node is important since it determines
the direction of motion of the robot team. A wise choice of frontier node can also give the
system desirable properties, such as formation, connectivity, etc. In this section, we introduce
our approach to select the frontier node.

For a given fence, we define a virtual node as a node that is located in the outer side of the
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Figure 4.3: Fence simplices (cyan) and selected frontier node (red dot) for a given configuration.
The corresponding fence simplex {4, 6} is also shown in red.

fence and its distance to all the robots that form the fence is R− δ, where δ is a tunable positive
number. The frontier node is the virtual node that has the shortest Euclidean distance to the goal
position. We use this greedy strategy as we assume that the robots do not have knowledge about
the environment. If the robots have knowledge about the environment, then we can use a more
advanced heuristic instead of Euclidean distance can be used, for example, length of shortest
path in 2d space with obstacles.

One remark is that, in the frontier set, there may be fence simplices that are part of an internal
hole. Since the selection criterion for the best fence, is smallest distance from the goal, a virtual
node corresponding to the internal fence simplex can never be chosen as the frontier node.

Definition 7 The extended sensing graph is Ge = (Ve, Ee), where Ve is the union of nodes in
sensing graph V and frontier node f , Ee is the union of edges in sensing graph Es and (f, v) for
any node v in the best fence simplex Fmin such that f is visible to v.

4.2 Tail Robot Selection
After the frontier node has been selected, our algorithm selects a robot as the tail of the path to
the frontier node. As is illustrated in Figure 4.1, the edges associated with the tail robot will be
removed for the next time step. Therefore, naive tail robot selection criteria that are based only
on the distance to goal do not preserve the connectivity of the robots. Figure 4.4 illustrates an
example that such naive criteria to select the tail robot cause the robots to become disconnected.

In order to preserve connectivity throughout coordination, we select the tail robot based on
the spanning trees of the extended sensing graph Ge. We note that deleting a leaf robot from the
spanning tree does not make the original graph disconnected. Based on the idea that the deepest
node in a tree is always a leaf, we select the robot that is deepest in the spanning tree as tail robot.

11



(a)
(b)

Figure 4.4: A case where naive criteria for tail robot selection fails to preserve connectivity. (a)
The shortest path from a naively selected tail robot (robot 12) to the frontier node. (b) Selecting
robot 12 as tail robot causes the robots to become disconnected at the next time step.

We can show that such selection of tail robot will not make the sensing and communication graph
disconnected. Another reason that we use a spanning tree to find the tail robot is that it can be
easily implemented in a decentralized manner, and the structure of the spanning tree enables fast
interchange of messages inside the robot team, which will be discussed in detail in Chapter 5.
Theorem 1 (Connectivity Guarantees) If the communication and sensing graph are connected
in the initial configuration, then the communication and sensing graph will remain connected
while moving.
Proof: Consider the spanning tree, T for the extended sensing graph Ge = (V , Ee). We define
the graph G ′e induced by Ge deleting a leaf node v of spanning tree T and its associated edges. It
is easy to see that G ′e is a spanning subgraph of the sensing graph for the next step. Therefore, if
G ′e is connected, then both the sensing graph and the communication graph are connected for the
next step. By induction, we can prove that if initially connected, Gc and Gs will stay connected
while moving. We prove that the graph G ′e is connected by constructing a tree T ′ which is proved
to be a spanning tree of G ′e. Construct T ′ by deleting v and its associated edge (there is only one
such edge) from the spanning tree T . Since v is a leaf of T , T ′ is a connected tree. According to
the definition of the spanning tree, T contains vertices Ve and edges ET ⊆ Ee, and T is connected.
Therefore, T ′ contains vertices Ve \ {v} and edges ET \ {(v, n) : n ∈ V}. Therefore, T ′ is a
spanning tree of G ′e.
Remark 1 Note that there may exist more than one spanning tree of the extended sensing graph
Ge. The selection of spanning tree is an interesting design choice since different spanning trees
may result in slightly different behavior of the system. We will introduce the particular spanning
tree we use in Section 5.3.

4.3 Path Planning
After the frontier node and the tail robot is selected. We can plan a path of robot such that the
“push” action can be made. For a desired path, we need 1) for each robot on the path, it is able
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to move directly to the current location of its parent in the path without causing collision, and 2)
the number of robots moving at each time step should be as small as possible. Therefore, we can
use the shortest path in the extended sensing as the path of robot. We can prove that the resulting
action is collision free.

(a) (b)

Figure 4.5: (a) Illustration of tail robot selection using spanning tree. Robot 15 (yellow) is
selected since it is the deepest leaf in the spanning tree. (b) The actual path (red arrows) planned
by our algorithm.

Theorem 2 (Collision Free Guarantees) We assume that a robot can only sense a point if and
only if there is no obstacle or robot sitting on the path between it and a certain point within its
sensing radius. If the obstacles are all static, then our algorithm can guarantee that the robots
will not collide with other robots or obstacles during locomotion if all the obstacles are far
enough from the initial region.

Proof: Remember that only a subset of robots which forms a path in the extended sensing graph
Ge is selected to move at each time step. Therefore, (1) the path from the robot to its master is
clear, and (2) the step-wise goal position is either being vacated by its master (for the robots not
moving to the frontier node), or is free throughout the step (for the robot moving to the frontier
node). We only need to show that there is no path intersection between robots. When the robots
have formed the lattice band formation, there is no intersection because there is no intersecting
edge in the sensing graph. Before the robots have formed the lattice formation, we can assume
that the sensing graph and communication graph is the same since the obstacles are far from
the initial region. In this case, based on a fact from geometry, there always exists a path with
no intersection which is shorter than the path with intersecting edges. Therefore, our algorithm
will never plan a path with intersecting edges. The movement does not result in any inter-robot
collision or collision with obstacles.

Remark 2 Note that if the tail robot is closer to the goal than the frontier node, however, the
robots will not move along the path because it will cause the robot to move further away from
the goal. This makes our algorithm terminate implicitly and achieve a rendezvous-like behavior
near the goal.
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4.4 Handling Corridors
Even though the lattice formation can handle most of the situations in cluttered spaces, there
may be cases where a corridor is so narrow that the lattice can not be fully expand, and therefore
there will be no frontier fence to be expanded (for example, Figure 4.6). In that case, we have to
identify whether the robots are stuck at the opening of a narrow corridor. This can be done by
using the idea of a degenerate fence discussed in Section 3.2.2 when the frontier node is further
from goal than the tail node.

(a) (b)

Figure 4.6: Handling narrow corridors which the robot can not pass with lattice formation. (a)
The frontier node is selected as the virtual node expanded by {8, 9}. The tail robot is selected
as robot 3. However, the tail robot is closer to the goal than the frontier node. (b) Our algorithm
moves on the expand the degenerate frontier, and drives the robot through the corridor.

In Figure 4.6a, for example, the frontier node is selected as the virtual node expanded by
{8, 9}. The tail robot is selected as robot 3. However, robot 3 is closer to the goal than the
frontier node. So our algorithm moves on to expand a degenerate frontier. For each degenerate
fence, we choose a virtual node that is nearest to the goal as is shown in Figure 4.6b, and select
the degenerate frontier and its corresponding degenerate frontier node with the same procedure
as described in Section 5.2. Then, the path planning stage is the same as in previous sections. If
the tail robot is closer to the goal than the degenerate frontier node, however, the robots will not
move along the path because it will cause the robot to move further away from the goal. This
makes our algorithm terminate implicitly and achieve a rendezvous-like behavior near the goal.
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Chapter 5

A Decentralized Framework

In the previous chapter, we have discussed the centralized version of our approach. In this chap-
ter, we will introduce a decentralized framework to implement our approach which provides
scalability and robustness. Our framework consists of several sub-algorithms, including con-
struction of the Vietoris–Rips complex, selection of the frontier node, selection of the tail robot
and planning of the path.

For each step, each of the sub-algorithms (stages) is run in a decentralized and asynchronous
way, and ends implicitly when there is no message sent regarding that particular stage. Therefore,
we introduce a pre-defined time limit for each of the stage s as TL,s. Each robot measures how
long there has been no message received during a stage s. If the time exceeds TL,s, the robot
will decide the current stage is over, and start to send messages for the next stage s+ 1. When a
robot at stage s receives a message belonging to stage s+1, it switches its current stage to s+1,
and starts the procedure for the new stage. Since each of the sub-algorithm is asynchronous,
any of the robots can initiate the next stage, and each of the sub-algorithms can converge to the
correct results. Therefore, each of our sub-algorithms is decentralized and no global information
is needed when switching between stages. For the rest of this chapter, we will introduce each of
the sub-algorithms.

5.1 Decentralized Construction of Simplicial Complex

Algorithm 1 describes how each robot calculates its local simplicial complex (only the simplicial
complexes that include itself) in a decentralized manner. This makes our work different from
[16], which calculates the simplicial complex for the multi-robot system in a centralized way. As
discussed in Section 3.2.2,Rk denotes the set of all k-simplices.

At the beginning, all the set of simplices is initialized to the empty set, exceptR0 = {u} (line
2). Then, the asynchronous procedure is initiated by each robot sending a message to all of its
direct neighbors (line 4). The parameters for SENDMSG(i, u, . . .) are defined as follows, i is the
target of the message, u is the source of the message, and others are the content of the message.
Similar is RECVMSG(), but there is no target in this function.

After that, the algorithm calculates the simplicial complex of each robot i and its direct
neighbors (line 6-28). First, when a message is received from u’s direct neighbor u′ for the
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first time (line 9-11), the UID of u′ is added to the local 0-simplices list, and the the pair of robot
u and u′ are added to 1-simplices list. Then robot u sends a message to its neighbor with the
updated local simplicial complex.

Algorithm 1 Decentralized Local Simplicial Complex Construction Procedure
1: procedure DECENTRALIZEDSIMPLICIALCOMPLEX(u,Nu)
2: R0 ← {u}.R1 ← ∅, . . .,Rd ← ∅
3: for all i ∈ Nu do
4: SENDMSG(i,u,R0,. . .,Rd)
5: end for
6: while {u′,R′0, . . . ,R′d} ←RECVMSG() do
7: // Construct local 0 and 1 simplices
8: if {u, u′} /∈ R1 then
9: R0 ← R0 ∪ {u′}

10: R1 ← R1 ∪ {u, u′}
11: SENDMSG(i,u,R1,. . .,Rd)
12: end if
13: // Construct local 2 to d-simplices
14: S ← R0 ∩R′0
15: for k = 2, . . . , d do
16: for all Sk ⊆ S with |Sk| = k + 1 do
17: Ck−1 ← {S ⊂ Sk : |S| = k}
18: if Ck−1 ⊆ Rk−1 then
19: Rk ← Rk ∪ Sk
20: end if
21: end for
22: end for
23: ifR0,. . .,Rd is updated then
24: for all i ∈ Nu do
25: SENDMSG(i,u,R0,. . .,Rd)
26: end for
27: end if
28: end while
29: end procedure

Then, the algorithm constructs the local 2-simplices (and 3-simplices in 3 dimensional cases).
The algorithm starts by calculating the union of sets of 0-simplices for robots u, and u′, which is
the set of their common neighbors denoted as S (line 14). For k range from 2 up to d, for each
subset of S consisting of k robots Sk, the algorithm checks whether all k subset of robots Ck−1
in Sk is within Rk−1 (line 16-21). If so, it means that Sk can form a k-simplicial complex, since
the distance between each pair of robots is within communication radius. For example, if {i, l}
and {j, l} are in the 1-simplices list for robot i, and robot j, respectively, then {i, j, l} should be
a 2-simplex inR2 of both robot i, j, and l. If the simplicial complex is updated when processing
the message, then the robot will send a message to all of its neighbors (line 23-27).

We note that our algorithm works in an asynchronous way, that is, our method only requires
pairwise communication between robots, and the order of robots receiving messages does not
matter. Our algorithm will end implicitly when each robot u constructs all the simplices that
contain the robot u.
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5.2 Decentralized Selection of the Frontier Node

To select the frontier node in a decentralized manner, each robot first calculates its local frontier
set Fu, i.e., the set of all fence simplices that include the robot. By definition of a fence simplex,
a (d− 1)-simplex is a fence simplex if either there is no d-simplex that has that (d− 1)-simplex
as a boundary, or all the robots that are in d-simplex but not in the (d − 1)-simplex lie in the
same side of the (d − 1)-simplex hyperplane. The robot iterates all the local (d − 1)-simplices
and selects the virtual node closest to the goal. Selecting a fence candidate can be done by each
robot without any communication.

Algorithm 2 Decentralized Frontier Selection Procedure
1: procedure DECENTRALIZEDFRONTIER(u,Rd−1,Rd,Nu,G)
2: Fu ← Rd−1, Pu ← ∅
3: for all rd−1 ∈ Rd−1 do
4: Rd ← {r : {rd−1, r} ∈ Rd}
5: if ONBOTHSIDE(rd−1,Rd) then
6: Fu ← Fu \ rd−1
7: else
8: p←EXTENDFRONTIER(rd−1, Rd)
9: Pu ← Pu ∪ p

10: end if
11: end for
12: d∗u ← minp∈Pu{‖G− p‖}
13: p∗u ← argminp∈Pu

{‖G− p‖}
14: f∗u ← argminf∈Fu

{‖G− EXTENDFRONTIER(f,Rd)‖}
15: for all i ∈ Nu do
16: SENDMSG(i,u,d∗u,p∗u,f∗u)
17: end for
18: while {u′, d∗u′ , p∗u′ , f∗u′} ←RECVMSG() do
19: if d∗u′ < d∗u then
20: d∗u ← d∗u′ , p∗u ← p∗u′ , f∗u ← f∗u′

21: end if
22: end while
23: end procedure

After selecting the local frontier set, each robot extends the fence simplices and calculates the
location of virtual nodes p ∈ Pu. Some fences would not be expanded for a variety of reasons:
(a) the existence of obstacles on the estimated position of a virtual node, (b) the virtual node
position is not visible to the robot. For all the fence simplices that can be expanded, the position
of virtual node p and its distance to the goal d is calculated.

Then, the frontier node f ∗ and its corresponding fence simplex F ∗, is selected in a decentral-
ized way. The robots initialize its belief of frontier node f ∗u as the local virtual node nearest to
the goal. When a robot u receives a message from its neighbor u′ containing its belief of frontier
node f ∗u′ , and its distance to the goal d∗u′ , it determines whether the neighbor’s belief is closer to
the goal than its own (u’s) belief. If so, robot u updates its belief and sends a message with this
update to its direct neighbors. Finally, every robot will reach a consensus about the frontier node,
i.e., f ∗u = f ∗ for all u.
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Remark 3 Since the procedure is very much the same for selecting the degenerate frontier node
which is used to handle narrow corridors, we will not introduce the decentralized procedure for
that in this chapter.

5.3 Decentralized Tail Robot Selection

Algorithm 3 Decentralized Tail Robot Selection
1: procedure DECENTRALIZEDTAIL(u,qu,Nu,f ,G)
2: if u ∈ F ∗ ∧ (qu, f) ∈ E ′e then
3: h← 1, m← 0
4: else
5: h←∞, m← i
6: end if
7: for all i ∈ Nu ∧ (qu, qi) ∈ Ee do
8: SENDMSG(i,u,h)
9: end for

10: // Construct a spanning tree rooted at the frontier node
11: while {u′, h′} ←RECVMSG() do
12: if h > h′ + 1 then
13: h← h′ + 1, m← u′

14: for all i ∈ Nu ∧ (qu, qi) ∈ Ee do
15: SENDMSG(i,u,h)
16: end for
17: end if
18: end while
19: // Find the leaf robot that is deepest in the tree
20: tid← u, th← h, td← ‖G− qu‖
21: for all i ∈ Nu do
22: SENDMSG(i,u,tid,thop,tdist)
23: end for
24: while {u′, t′id, t′hop, t′dist} ←RECVMSG() do
25: if thop < t′hop then
26: tid ← t′id, thop ← t′hop, tdist ← t′dist
27: for all i ∈ Nu do
28: SENDMSG(i,u,tid,thop,tdist)
29: end for
30: else if thop = t′hop ∧ tid 6= t′id then
31: if tdist < t′dist then
32: tid ← t′id, tdist ← t′dist
33: for all i ∈ Nu do
34: SENDMSG(i,u,tid,thop,tdist)
35: end for
36: end if
37: end if
38: end while
39: end procedure

After the frontier node has been selected, our algorithm selects a robot as the tail of the path
to the frontier node. Our algorithm presented in Algorithm 3 uses a decentralized way to select
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a tail robot such that (a) its deletion does not harm the connectivity of the graph, and (b) the
constructed path with the frontier node as head has minimal length.

First, our algorithm implicitly constructs a hop-optimal spanning tree [12] (line 3-18). Al-
gorithm 3 is initiated by one or several robots in the fence simplex corresponding to the frontier
node, denoted as F ∗, that can sense the frontier node f ∗ (in other words, robots v suh that (v, f ∗)
is an edge in the extended sensing graph Ee). The spanning tree provides two advantages: (1)
since removal of any leaf of the spanning tree does not harm the connectivity of the graph (proven
in Section 4.2), we can choose a leaf in the spanning tree as the tail robot, (2) due to the hop-
optimality of the spanning tree, a shortest path from the tail robot to the frontier node is exactly
the path from the tail robot (leaf) to the frontier node in the spanning tree.

Another important remark about our procedure for constructing the spanning tree is that each
robot does not know the structure of the spanning tree. It is only aware of its master m (parent)
in the spanning tree, and the number of hops (h) between it and the root.

Then, based on the idea that the deepest node in a tree is always a leaf, the algorithm starts
finding the robot that has the deepest hop (line 20-38). At the beginning, each robot believes
itself to be a leaf, with tail robot id tid = u, tail robot hop number thop = h, tail robot distance
to goal position tdist = ‖G − qu‖. If the robot receives a message indicating that (1) another
robot is deeper than its current belief of tail robot (line 25) or (2) another robot is equally deep
as its current belief but it is further from the goal (line 31), it will update its belief, i.e., it will not
consider itself as a leaf anymore and send a message to its neighbors.

5.4 Plan Path from Tail to Frontier Node
At the beginning of this sub-algorithm, the stepwise goal positions for robots are initialized as
the robots’ current positions. If the tail robot is closer to the goal than the frontier node, then the
robot will not move since this movement will drive the robot team further away from the goal.
Then we need to check the degenerate frontier node described in Section 4.4, and select a new
tail robot corresponding to the degenerate frontier node.

Algorithm 4 Decentralized Plan Path to Frontier Procedure
1: procedure DECENTRALIZEDPATHPLAN(u,qu,Nu)
2: gu ← qu
3: if u = tid then
4: gu ← qm
5: if m 6= 0 then
6: SENDMSG(m,u)
7: end if
8: end if
9: while {u′} ←RECVMSG() do

10: gu ← qm
11: if m 6= 0 then
12: SENDMSG(m,u)
13: end if
14: end while
15: end procedure
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As discussed in Section 5.3, the shortest path from the tail robot to the frontier node is exactly
the path in the hop-optimal spanning tree. Therefore, the tail robot will first set its goal position
for this time step to be the position of its current (spanning tree) master (line 4) and send a
message to its master. When a robot receives a message, it means that it is on the path, and
should move to its master’s position in this time step. It will then send a message to its own
master until the robot actually occupies the frontier node (head of the path). In this way, each
robot will move towards its stepwise goal position for this time step (see Section 4.1).
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Chapter 6

Simulation Results

In this section, we illustrate the performance of our algorithm by simulations in 2 dimensional
scenarios. In the simulation, the communication radius and sensing radius are R = 10. Each
robot has circular body with radius r = 1. In initial configuration, the robots are arbitrarily
placed in a region centered by a starting position (0, 0). The objective of the robots is to move to
a goal region centered at (150, 250).

-50 0 50 100 150 200 250 300
-50

0

50

100

150

200

250

300

(a) step 1

-50 0 50 100 150 200 250 300
-50

0

50

100

150

200

250

300

(b) step 16

-50 0 50 100 150 200 250 300
-50

0

50

100

150

200

250

300

(c) step 40

-50 0 50 100 150 200 250 300
-50

0

50

100

150

200

250

300

(d) step 64

-50 0 50 100 150 200 250 300
-50

0

50

100

150

200

250

300

(e) step 67

-50 0 50 100 150 200 250 300
-50

0

50

100

150

200

250

300

(f) step 79

-50 0 50 100 150 200 250 300
-50

0

50

100

150

200

250

300

(g) step 105

-50 0 50 100 150 200 250 300
-50

0

50

100

150

200

250

300

(h) step 115

Figure 6.1: Snapshots of a group of 35 robots (blue circles) moving from initial configuration
(step 1) toward the goal position (red circle). The robots implicitly move in a lattice band forma-
tion, pass though corridors, and rendezvous around goal position (step 115).

Figure 6.1 illustrates our algorithm in a challenging scenario with 35 robots. A large portion
of the area is occupied by obstacles and there is also a narrow corridor that does not allow robots
to pass in a lattice band formation. Figure 6.1a shows the initial configuration of the robots,
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where robots are placed near the starting point. Please note that the robots are not necessarily
in a lattice formation initially. Then the robots start moving to a lattice band formation by ex-
tending frontier fences (Figure 6.1b). As is shown in Figure 6.1c, the lattice band deforms when
encountering obstacles. Then the robots gather at a corner before passing through the corridor
(Figure 6.1d). After that, robots start passing through the corridor by extending the degenerate
frontier fence, i.e., the robots move in a broken line formation when passing through the corridor
(Figure 6.1e). After passing the corridor, the robots autonomously re-form the lattice band. Sub-
sequently, the robots start gathering near the goal position (Figure 6.1g). Figure 6.1h shows the
final configuration of the robots. The robots succeed in achieving a rendezvous-like behavior in
a finite number of steps, even with the existence of an obstacle near the goal position.

To show the scalability of our algorithm, we tested our algorithm with different numbers
of robots ranging from 20, 35, 50 to 100. We also tested our algorithm with 50 robots on 3
different maps: (a) obstacle-free map, (b) low density map with relatively small portion (10%)
of area occupied by obstacles, and (c) high density map with relatively high portion (30%) of
area occupied (this map is shown in Figure 6.1). All cases are tested under the same starting
and goal positions as is shown in the map. For each of the settings, there are 10 trials with
different initial configurations near the same starting point. The average computational time in
seconds, average number of messages for each robot per step, and number of steps to reach goal
region is shown in Figure 6.2. All the three properties grows linearly as the number of robots
increases. Moreover, map density does not have significant influence on average number of
messages. However, the average computational time increases by a constant as the map density
increases. One possible reason is that the computational time for collision check for obstacles
increases as the number of robots increases. This also matches the constant increase and the
invariance of message numbers. Number of steps to converge to goal configuration also increases
by a constant as the map becomes denser. This occurs because the distance that the robots have
to travel to the goal increases as the map becomes denser.
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Figure 6.2: Quantitative results for a group of 20, 35, 50 and 100 robots in three 2-dimendional
maps with different density level (10 trials each). The average number of messages, average
computational time and number of steps to achieve goal all scale almost linearly. Map density
variance causes approximately constant difference for computational time and number of steps as
the number of robots grows, but does not have significant influence on the number of messages.
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Chapter 7

Conclusion

This thesis presents a novel decentralized behavior-based coordination strategy to navigate a
large team of robot through a cluttered environment under various constraints, including avoiding
inter-robot collision, preserving connectivity, and avoiding collision with static obstacles. Under
this coordination strategy, the robot team implicitly forms a deformable lattice formation and
navigates toward a given goal location with incremental motion. Key performance with respect
to the average number of messages, average computational time and average number of time
steps to converge on different sized robot teams in maps with different obstacle density levels
were demonstrated in simulations to validate the effectiveness and scalability of the proposed
algorithm. The algorithm has multiple advantageous properties:

1. The algorithm scales linearly in the number of robots as is shown in simulation results.

2. The algorithm enables robot teams to deform flexibly considering the incrementally sensed
obstacles in the environment.

3. The algorithm guarantees collision avoidance and connectivity preservation without suf-
fering from deadlock.

4. The algorithm is robust to insertion or failure of individual robots since it utilizes incre-
mental movement to coordinate the robot team.
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