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Abstract Semantic scene understanding is a useful capability for autonomous ve-
hicles operating in off-roads. While cameras are the most common sensor used for
semantic classification, the performance of methods using camera imagery may suf-
fer when there is significant variation between the train and testing sets caused by
illumination, weather, and seasonal variations. On the other hand, 3D information
from active sensors such as LiDAR is comparatively invariant to these factors, which
motivates us to investigate whether it can be used to improve performance in this
scenario. In this paper, we propose a novel multimodal Convolutional Neural Net-
work (CNN) architecture consisting of two streams, 2D and 3D, which are fused
by projecting 3D features to image space to achieve a robust pixelwise semantic
segmentation. We evaluate our proposed method in a novel off-road terrain classifi-
cation benchmark, and show a 25% improvement in mean Intersection over Union
(IoU) of navigation-related semantic classes, relative to an image-only baseline.

1 Introduction

For autonomous vehicles operating in unstructured off-road environments, under-
standing their environment in terms of semantic categories such as “trail”, “grass”
or “rock” is useful for safe and deliberate navigation. It is essential to have robust
scene understanding as false information can result in collisions or other accidents.

An important step toward scene understanding is semantic image segmenta-
tion, which classifies an image at a pixel level. In recent years, deep Convolutional
Neural Networks (CNNs) have achieved the state-of-the-art in semantic segmenta-
tion [5, 6,8,10, 12,17, 19], surpassing traditional computer vision algorithms. How-
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Fig. 1: An image-based CNN [6] trained on a sunny summer dataset (top row) can-
not predict robustly when a test dataset has severe appearance variations, such as on
a cloudy winter dataset (bottom row).

ever, we have observed segmentation performance for CNNs suffer when there exist
significant appearance variations between the train and testing sets, caused by illu-
mination, weather, and seasons (Fig 1). A straightforward solution is to add more
training data with the relevant variation factors, but this approach is expensive be-
cause of the effort required to collect data and label the ground-truth for training.

Instead, an effective approach to address this problem is to use an additional,
complementary, sensor, such as LiDAR. Whereas a camera has advantages in the
range of vision and the density of data, a LiDAR has an advantage in invariance
to appearance variation caused by illumination, weather, and seasons. Thus, a com-
bined approach using an image and 3D point clouds collected by LiDAR creates
opportunities for CNNs to take advantage of their complementary characteristics.
However, the following questions still remain open: 1) how to jointly use the two
sensors for image segmentation, and 2) what features from each modality are useful
for robust segmentation.

In this work, we propose a solution in terms of a deep multimodal network, which
jointly uses image and 3D point cloud data, and outputs a segmented image. Our
main contribution is a framework with projection modules that enable the multi-
modal network to learn 2D and 3D feature representations, but also combine the fea-
tures in different domains effectively during training to segment an image robustly.
To evaluate the robustness of our method to appearance variations, we assembled a
labeled dataset of image and LiDAR captured from a modified All-Terrain Vehicle
operating in an off-road location across two different seasons, winter and summer.
We show that our proposed approach is highly accurate and significantly more ro-
bust to this variation than image-only baselines.
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2 Related Work

In general, relevant approaches for semantic scene understanding broadly fall into
one of two classes depending on the number of input modalities: unimodal (e.g.,
only image input) or multimodal (e.g., image and 3D point cloud).

2.1 Unimodal image-based approaches

Semantic segmentation of RGB images is an active research topic. Many successful
approaches use graphical models, such as Markov or Conditional Random Fields
(MRFs or CRFs) [1–4]. These approaches often start with an over-segmentation
of an image into superpixels and extract hand-crafted features from individual and
neighboring segments. A graphical model uses the extracted features to ensure the
consistency of the labeling for neighboring regions.

Instead of relying on engineered features, CNN-based approaches have achieved
the state-of-the-art segmentation performance by learning strong feature represen-
tations from raw data [5, 6, 8]. The main difference between CNN approaches is
the network architecture. Shelhamer et al. [5] introduce the use of skip layers to re-
fine the segmentation produced by so-called deconvolution layers. Badrinarayanan
et al. [6] propose an encoder-decoder architecture with unpooling layers. These ar-
chitectures use the relatively slow VGG [7] architecture. To reduce computational
costs, an important goal for robotics, Paszke et al. [8] apply a bottleneck structure,
motivated by [9], to build an efficient network with a small number of parameters
but similar accuracy to prior models. We base the image-based part of our network
on these architectures.

2.2 Multimodal Approaches

Researchers have used image and 3D point clouds for scene understanding. In one
of the main inspirations for our work, Munoz et al. [13] train two classifier cascades,
one for each modality, and hierarchically propagate information across the two clas-
sifiers using a stacking approach. Newman el at. [14] describe a framework that
classifies an individual LiDAR data by the Bayes decision rule and support-vector
machines, and uses the majority consensus to label superpixels in an image. Cadena
and Košecká [15] propose a CRF framework that enforces spatial consistency be-
tween separate feature sets extracted from two sensor’s coverage. Alvis et al. [16]
extract appearance features from images for CRF and obtain global constraints for
sets of superpixels from 3D point clouds.

There are also several CNN-based approaches using RGB and Depth (RGBD)
representations, usually from stereo or structured lighting sensors. Couprie et al. [10]
combine feature maps of multiscale CNNs from RGB-D and superpixels obtained
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Fig. 2: Our multimodal network takes inputs of an image and a 3D point cloud.
Our network learns and combines 2D/3D features; and outputs a segmented image.
(point cloud colored by the intensity)

from an RGB image to segment an image. Gupta et al. [12] extract CNN features
both from the color and the encoded depth to detect objects in indoors. They demon-
strate that the augmented features computed based on object detections improve the
segmentation performance in [11].

A recent, relevant RGBD approach is that of Valada et al. [17]. In this approach
identical 2D CNNs are first learned to segment different modality input. Then fea-
tures of different modalities are fused by summing up feature maps of each CNN’s
output and processed later (late-fusion convolution approach). Whereas their fusion
happens at the output of each CNN model (late-fusion), we consider incorporating
features hierarchically from the other modality as multiple levels of abstractions
learned by CNN have proven beneficial [19].

A critical difference of our approach to methods using RGBD, is that we learn
not only 2D features, but also 3D features. 3D features contain useful spatial infor-
mation, which is hard to learn in 2D.

3 Proposed Approach

Our objective is to predict four semantic classes (“High Vegetation”, “Rough Ter-
rain”, “Smooth Terrain”, “No Info”) for safe navigation in off-roads. Cameras are
the most common sensor used for scene understanding because it has advantages
in a long range of vision (e.g., obstacles can be detected in the far distance) and
dense data. However, the performance of an image-based CNN may suffer when
there exists a significant variation between the train and testing image sets caused
by illumination, weather, and seasonal variations. On the other hand, 3D informa-
tion from LiDAR is comparatively invariant to these factors. We additionally use a
3D point cloud data to help CNN learn a more robust set of features to appearance
variations.
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Fig. 3: ENet Modules [8] used in our network. max: maxpooling layer with non-
overlapping 2×2 windows. up: upsample layer by a factor of 2. conv: either a reg-
ular, dilated, or asymmetric convolution layer. bn: batch normalization. regularizer:
spatial dropout. 1×1 with down or up arrow: 1×1 convolution to reduce or expand
channels.

Our deep multimodal network (Fig. 2) jointly uses an image from a camera and
a 3D point cloud from a LiDAR, and outputs a segmented image. Our framework
consists of an image network that learns 2D feature representations from an image,
a point cloud network that learns 3D feature representations from a point cloud, and
a projection module that propagates the learned 3D features to the image network.
The propagation of the 3D features enables the image network to combine 2D/3D
features and learn a more robust set of features during training. In this section, we
describe these major components of our multimodal network in detail.

3.1 Image Network

The goal of an image network is to learn 2D feature representations θ 2D from im-
ages that minimize the categorical cross-entropy loss. A network should have a good
segmentation performance, but also have fast prediction time and a small number of
parameters to be easily embedded in a real-time autonomous system. In this work,
we design the network based on ENet [8], which has demonstrated its similar per-
formance to existing models (e.g., SegNet [6]) but with much faster inference time
and much smaller number of parameters. ENet has the encoder part (initial, stage
1-3) and the decoder part (stage 4-5), which consist of the initial, downsample, up-
sample, and bottleneck module described in Fig. 3. The bottleneck module has an
architecture of a single main branch and a separated branch with convolutional fil-
ters. We use it several times in each stage, which enables the network to be deeper
with less vulnerability to the network degradation problem [9]. ENet architecture
is described in Fig. 5 (the above network). We refer readers to [8] for more details
about the network.
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Fig. 4: Visualization of roughness and porosity feature. The terrain area shows a low
roughness and low porosity, relatively to the vegetation area. We omit empty voxels
for visibility. Axis notation: x-axis (red), y-axis (green), z-axis (blue)

3.2 Point Cloud Network

Similarly to the image network, the point cloud network learns 3D feature repre-
sentations θ 3D that minimize the categorical cross-entropy loss in the 3D modality.
For our experiment, we use the image network (Sec. 3.1) but in 3D by using the 3D
convolution layer, max-pooling layer, and upsampling layer 1.

We want to predict semantic classes of a high vegetation and a terrain as these
commonly appear in off-roads. Intuitively, we would expect that the terrain area to
be smoother compared to the high vegetation area; and the space containing veg-
etation to be relatively more porous compared to the terrain area. Maturana and
Scherer [18] use this intuition and train a 3D CNN with the porosity as input to pre-
dict a landing zone detection. Similarly, we provide the roughness and the porous
feature (Fig. 4) as input to the network, instead of a raw point cloud. Our hypothesis
is that these features represent the desired semantic classes better than a raw point
cloud.

For each grid voxel2 indexed by (i, j,k), we calculate the roughness feature
R3D

i, j,k by calculating the mean residual from a fitted plane to each point inside the
voxel [21]:

R3D
i, j,k =

1
N

N

∑
n=1

|Axn +Byn +Czn +D|√
A2 +B2 +C2

(1)

1 For performance reasons, we simplify the point cloud network by replacing the dilation layer and
asymmetric layer with the regular convolution layer. Also, we replace the deconvolution layer with
the upsample layer followed by the 3×3×3 convolutional layer with stride 1. For simplicity, we
use the same term “deconvolution”.
2 Point cloud is represented by the 3D voxel grid as a convolutional architecture requires a regular
input data format.



Season-Invariant Semantic Segmentation with A Deep Multimodal Network 7

where N is the number of points inside each voxel, x, y, z are the position of each
point, and A, B, C, D are the fitted plane parameters for N points inside the voxel
(i.e., Ax+By+Cy+D = 0). For empty voxels (i.e., no points), we assign a constant
negative roughness value of −0.1.

For the porosity feature P3D
i, j,k, we use the 3D ray tracing [20] to obtain the num-

ber of hits and pass-throughs for each grid voxel. Then we model the porosity by
updating Beta parameters α t

i, j,k and β t
i, j,k for the sequence of LiDAR measurements

{zt}T
t=1 [18]:

α
t
i, j,k = α

t−1
i, j,k + zt (2)

β
t
i, j,k = β

t−1
i, j,k +(1− zt) (3)

P3D
i, j,k =

α t
i, j,k

α t
i, j,k +β t

i, j,k
(4)

where α0
i, j,k = β 0

i, j,k = 1 for all (i, j,k), zt = 1 for the hit, and zt = 0 for the pass.

3.3 Projection Module

The projection module first projects the 3D features learned by the point cloud net-
work onto 2D image planes. Then the bottleneck module in Fig. 3 is followed so
that better feature representations can be propagated to the image network.

In terms of the projection, we map each voxel’s centroid position (x,y,z) with
respect to the LiDAR onto the image plane (u,v) by the pinhole camera model:

s

u
v
1

=

 fx 0 cx
0 fy cy
0 0 1

[R | t]


x
y
z
1

 (5)

where fx, fy, cx, cy are the camera intrinsic parameters, R and t are the 3x3 rotation
matrix and the 3x1 translation matrix from a camera to a LiDAR, respectively. We
sample (x,y,z) for every voxel size from the original point cloud dimension (e.g.,
16× 48× 40 in Fig. 5). This is to address a problem that the projection becomes
sparse due to the 3D maxpooling layers that reduce a dimension of a point cloud.
We apply the z-buffer technique to account pixels that have multiple LiDAR points
projected onto the same pixel location. Then, we use the nearest-neighbor interpo-
lation to downsample the projected image planes to match the size of the image
network’s layer that the projection module will be merged to (Sec. 3.4).

We consider a fixed volume of 3D point clouds with regard to a LiDAR (Sec 4.3).
Thus, voxel locations and their corresponding projection locations in the image net-
work are constant if the dimensions of a point cloud and an image are same (e.g.,
projection for stage 1 and 4). In practice, we pre-compute indices of voxel locations
and their corresponding pixel indices, and use them inside the network.
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Fig. 5: Our multimodal network architecture. The upper 2D part is the image net-
work, and the lower 3D part is the point cloud network. They are connected via the
projection modules. ENet modules refer to the modules in Fig. 3. The number below
the bottleneck module indicates a number of times that the module is used.

3.4 Multimodal Network

Fig. 5 summarizes our multimodal network architecture: the point cloud network
learns 3D features from the roughness and porous point cloud, the projection module
propagates the 3D features to the image network, and the image network combines
the 3D features with the 2D features extracted from images. We apply the projection
modules to the outputs of the initial and the stage 1-5 because multiple levels of
features learned by CNN are beneficial [19].

4 Results

We evaluate our method through a series of experiments. The experiments analyze
the ability of our framework to robustly segment images despite the appearance
variations caused by illumination, weather, and seasonal variations.

4.1 Dataset

We collected our dataset using a modified All-Terrain Vehicle (Fig 6a) with a cam-
era and a LiDAR, HDL-64E, mounted. To acquire dataset with a large appearance
variation, we collected our data on two separate dates: summer sunny day in July
2016 (24 sessions) and winter cloudy day in January 2017 (2 sessions). Because the
amount of winter data collected is considerably small and not enough to train our
multimodal network, we only use summer data for training. We divide the dataset
based on sessions: train (17 summer sessions), validation (4 summer sessions), test
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(a) (b)

Fig. 6: (a): Our All-Terrain Vehicle used for collecting the dataset. The vehicle has
a camera on the front and a LiDAR on the top. (b): GPS coordinates overlayed on a
geo-referenced satellite map to visualize the data distribution.

summer (3 summer sessions), and test winter dataset (2 winter sessions). For the
K-fold cross validation in Sec 4.4, we set the test datasets, but randomly shuffle
train/validation sessions. Data distribution for one of the K-fold cross validations
is shown in Fig. 6b. We note that there is no overlap between the train, validation,
and test datasets. Among the K-folds, the train data has 7.2K pairs, and the valida-
tion data has 1.7k pairs of an image and a point cloud in average. The test data for
summer has 1.3k pairs, and the test data for winter has 0.6k pairs.

Our ground-truth semantic labels consist of 4 classes: “High Vegetation”, “Rough
Terrain”, “Smooth Terrain”, and “No Info”. To effectively label the ground-truth and
minimize the human error, we first construct a registered point cloud by stitching
point clouds over time (Fig 7a). Then we manually label the registered point cloud
in the point cloud space between the terrain and high-vegetation class (Fig 7b).
We separately label another cloud with labels between the rough terrain and smooth
terrain using the equation 1 (Fig 7c). We merge the two labeled point clouds into one
cloud with three classes (Fig 7d). To get image labels, we project the final labeled
point cloud onto an image plane. We consider voxels with no points and pixels with
no LiDAR points projected as the no info class.

4.2 Architectures

We compare the performance of our method (Ours-Proj) against baselines. The first
baseline (Mode) classifies each pixel based on a pixelwise mode of the labels in the
train dataset. Because off-roads have a general structure of trail on center and vege-
tation on sides, this baseline is significantly better than chance. The second baseline,
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Fig. 7: The point cloud ground-truth generation procedure. (a): Point clouds are first
registered. (b): The terrain and high-vegetation class are labeled manually. (c): The
rough and smooth terrain class are labeled automatically using equation 1. (d): Final
labeled point cloud is acquired by merging labeled point cloud (b) and (c).

SegNet is a popular encoder-decoder image segmentation network [6]. The third
baseline, Ours-Image, is the image network of our multimodal network without the
point cloud network and the projection modules. The last baseline (Ours-RGBRP)
is same as Ours-Image, but its input to the network is 5 channels (RGB, Roughness,
Porous) by projecting the point cloud network’s inputs onto the image planes and
treating them as additional channels similarly to the color channels. Ours-RGBRP
baseline compares the effectiveness of the learning and propagation of the 3D fea-
tures against learning 2D features.

We also explore options for Ours-Proj with different locations of the projection
module. We experiment with a single projection module for each stage, encoder
projections (initial and stage 1-3), and decoder projections (stage 4-5).

4.3 Training Details

All input and label images are resized to 224×224 px. With respect to the LiDAR,
we have a fixed volume of point cloud: −3.0m to 0.6m (z-axis), 3.0m to 17.4m (x-
axis), and −6.0m to 6.0m (y-axis), where the axis corresponds to the one in Fig 4.
The voxel size is 0.3m, so the input and label point clouds have a dimension of 12×
48×40 (z, x, y-axis). The intrinsic and extrinsic parameters in the projection module
are calibrated off-line. To reduce a GPU memory required for training Ours-Proj, we
first separately train the point cloud network. Then we remove the deconvolution
and softmax layer in the point cloud network, connect with the image network via
the projection modules, and train the image network and projection modules by
fixing the point cloud network’s weight. Except for SegNet, all learning methods
are based on Theano. For SegNet [6], we use its publicly available code. We train
all learning methods from scratch. We use the validation data to determine weights
for the testing.
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Table 1: Quantitative Results on Summer Test (Mean and Standard Deviation)

Per-Class IoU Average PR

Vege. Rough Smooth No Info Precision Recall

Mode .513(.041) .000(.000) .508(.015) .806(.009) .572(.006) .611(.010)

SegNet .816(.008) .182(.007) .670(.019) .828(.010) .741(.003) .767(.008)

Ours-Image .814(.007) .183(.008) .702(.059) .837(.003) .742(.004) .767(.008)

Ours-RGBRP .833(.008) .181(.019) .648(.104) .858(.011) .747(.007) .774(.017)

Ours-Proj .839(.005) .179(.014) .655(.072) .864(.003) .747(.006) .772(.015)

Table 2: Quantitative Results on Winter Test (Mean and Standard Deviation)

Per-Class IoU Average PR

Vege. Rough Smooth No Info Precision Recall

Mode .453(.010) .000(.000) .712(.012) .855(.003) .589(.002) .609(.004)

SegNet .474(.067) .027(.002) .660(.109) .784(.059) .605(.032) .630(.031)

Ours-Image .498(.018) .017,(.004) .595(.120) .862(.009) .623(.008) .622(.020)

Ours-RGBRP .582(.035) .036(.008) .692(.107) .881(.002) .678(.010) .689(.022)

Ours-Proj .620(.012) .040(.005) .790(.061) .875(.002) .688(.003) .705(.010)

4.4 Experimental Results

We report a quantitative performance with the per-class Intersection over Union
(IoU) and average precision-recall (PR) in Table 1 and 2. The numbers correspond
to the mean and standard deviation of the K-fold cross validations, where K = 5.

Thanks to the off-road’s general structure, Mode works reasonably well for both
summer and winter. However, there are no pixelwise modes for the rough terrain
class, due to a small number of the rough class relative to the other classes. The
performances between the unimodality networks (SegNet and Ours-Image) and the
multimodality networks (Ours-RGBRP and Ours-Proj) are comparable for summer.
But, the multimodal networks outperform the unimodality networks for winter. For
instance, Ours-Proj shows a 25% improvement in mean Intersection over Union
(IoU) of the navigation-related semantic classes (i.e., semantic classes except the
no info class) relative to SegNet. Between Ours-Proj and Ours-RGBRP, Ours-Proj
shows improved IoU and PR. Especially, Ours-Proj predicts the smooth terrain class
accurately than other baselines. The results imply that the learning and propagation
of 3D features help the network learn more robust feature representations. The quali-
tative results (Fig 9) support our quantitative results. Videos of the qualitative results
can be found at: http://frc.ri.cmu.edu/˜dk683/fsr17/fsr17.mp4.

The IoU scores for the winter’s rough terrain class is small due to a little amount
of the class in the winter label. We note that the multimodal methods can have
advantages in predicting the no info class because the ground-truth for the class
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Fig. 8: Feature map visualization for each projection module’s output.

is based on the LiDAR projection. However, the multimodal networks still show
improved results for the navigation-related classes.

In terms of Ours-Proj with the different projection module locations, empiri-
cal results show that the option of the encoder projections (initial and stage 1-3)
achieves the best segmentation performance (similar results to the full projections
described in Fig 5). For a single projection module, the early fusion (stage 1 or 2)
has better results than the late fusion (stage 4 or 5).

4.5 Network Visualization

Fig. 8 shows feature maps for each projection module. Each feature map represents
a particular feature on an input that a filter looks at, so it helps understand what 3D
features are propagated to the image network and why they improve the results.

The visualization shows that filters focus on lower horizontal planes (e.g., ter-
rain), vertical planes on both side (e.g., high vegetation), or diverse combinations of
spatial focus based on height, width, and depth. These are helpful 3D spatial fea-
tures that are hard to learn in the image domain. Thus, the joint training with 2D and
3D features would explain why Ours-Proj achieves the best performance.

5 Conclusion

We describe a novel deep multimodal network consisting of two streams, a 2D CNN
and 3D CNN, which are merged by projecting the 3D features to image space to
achieve a robust pixelwise semantic segmentation. We demonstrate the ability to
segment robustly despite of the challenge of severer appearance variation caused by
seasons. Future works include faster prediction time for a real-time operation.
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Fig. 9: One of the K-fold Cross Validation Qualitative Results.
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