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Abstract— Cooperative driving behavior is essential for driv-
ing in traffic, especially for ramp merging, lane changing
or navigating intersections. Autonomous vehicles should also
manage these situations by behaving cooperatively and nat-
urally. The challenge of cooperative driving is estimating
other vehicles’ intentions. In this paper, we present a novel
method to estimate other human-driven vehicles’ intentions
with the aim of achieving a natural and amenable cooperative
driving behavior, without using wireless communication. The
new approach allows the autonomous vehicle to cooperate
with multiple observable merging vehicles on the ramp with
a leading vehicle ahead of the autonomous vehicle in the same
lane. To avoid calculating trajectories, simplify computation,
and take advantage of mature Level-3 components, the new
method reacts to merging cars by determining a following
target for an off-the-shelf distance keeping module (ACC)
which governs speed control of the autonomous vehicle. We
train and evaluate the proposed model using real traffic data.
Results show that the new approach has a lower collision rate
than previous methods and generates more human driver-like
behaviors in terms of trajectory similarity and time-to-collision
to leading vehicles.

I. INTRODUCTION

Since the 2007 DARPA Urban Challenge, autonomous
driving-related technology has developed rapidly. Some of
the results are currently being used in commercial vehicles.

Though some advanced driving assistant systems enable
vehicles to drive hands-free under certain conditions or
below certain speeds, they do not guarantee proper “social
driving” interactions with other vehicles. Even if autonomous
vehicles become affordable to consumers and successfully
commercialized in the future, there will be a long period of
time before human-driven vehicles disappear. It is therefore
important for autonomous vehicles to exhibit social behaviors
to properly interact with human-driven vehicles or other
autonomous vehicles.

Especially in a relatively crowded and congested merging
scenario, interacting with one merging vehicle may not be
sufficient, since multiple merging vehicles could be on a
ramp. An autonomous vehicle must therefore coordinate with
all relevant vehicles which are detected on the ramp. The
autonomous vehicle should try to estimate intentions for each
merging vehicle, and then choose a proper strategy resulting
in efficient interactions. In a congestion scenario, there could
be other constraints that affect behaviors of merging vehicles
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Fig. 1: Merge scenario. The host vehicle (green) is an autonomous
vehicle, running on the main road; the leading vehicle (white) is
a human-driven vehicle, running on the main road, ahead of the
host vehicle; the merge vehicles (red) are human-driven vehicles,
running on the ramp.

and limit the reaction of the autonomous vehicle, such as
a leading vehicle in front of the autonomous vehicle. The
leading vehicle and merging vehicles will mutually affect
each other, resulting in different behavior of the autonomous
vehicle. Hence the autonomous vehicle should try to identify
intentions of the leading vehicle with respect to merging
vehicles. Ignoring the leading vehicle’s effect may result in
the autonomous vehicle not taking the best possible action.

In this paper, we focus on ramp merge control with a
leading vehicle running ahead of an autonomous vehicle, as
shown in Figure 1. The goal of our method is to estimate
whether or not the merging vehicles intend to yield to the
host vehicle, and then react to them. The method takes
full advantage of the current Adaptive-Cruise-Control (ACC)
model on commercial cars to avoid calculating trajectories,
which serves as a intermediate module in our behavioral
framework [1]. We start from a model to handle 1-on-
1 intention estimation [2] which only considers one host
vehicle and one merging vehicle. The 1-on-1 model is used
as a building block for the intention estimation of multiple
merging vehicles from both the host vehicle and leading
vehicle standpoints. A deterministic rule then ensures that
the host properly reacts to the merging vehicles and leading
vehicle. Experimental results show that our proposed method
controls the host vehicles in the face of merging traffic
with a lower collision rate than previous approaches and
outperforms them in terms of similarity to human-driven
vehicles, with smaller differences between the autonomous
vehicles’ and human-driven vehicles’ trajectories and similar
distribution on time-of-collision to the leading vehicles.

II. RELATED WORK

There are several references that address the merging
problem. Urmson et al. [3], Hidas [4] and Marinescu et al. [5]
all use the same idea of a slot-based approach for cooperative



Fig. 2: 1-on-1 PGM, V1, ..., Vn are n speed nodes; I is intention
node; Tm is the time-to-arrival from the merging car to the merging
point; Th is the time-to-arrival from the host vehicle to the merging
point.

merging control. They first check merging availability for
each slot in the target-lane (a slot is the free area between
two cars). Then they check feasibility of actions to find the
best feasible slot for acceptable merging acceleration. Their
decision is based on current states and no historical data are
considered, which can lead to failures in some cases.

J. Wei et al. [6] proposed an intention-integrated frame-
work to enable an autonomous car to perform cooperative so-
cial behavior. Accelerations of cars merging from a ramp are
considered, which is hard to obtain by onboard sensors. The
estimation again only considers the merging vehicle’s current
state, ignoring its historical state. The lack of historical data
leads to instability in estimated intention, which results in
oscillation or delayed reaction to the autonomous vehicle.
To react to surrounding vehicles and reduce computational
time, Wei et al. [7] proposed a QMDP single-lane behavior
framework which takes uncertainties into account. They also
applied a cost function to evaluate and select the proper
strategy. The Markov Decision Process (MDP) implicitly
estimates intention based only on current state, again without
considering historical data.

Schlechtriemen et al. [8] calculate lane-changing proba-
bilities by vehicles’ lateral speeds using Random-Decision-
Forest and Gaussian Mixture Regression. Whereas we predict
merging intention by a vehicle’s longitudinal speeds over
time using a graphical model. Lenz et al. [9] generate
cooperative planning for autonomous highway driving using
Monte-Carlo Tree Search (MCTS). Their method can handle
multiple vehicle interactions in a merging scenario in the
simulator. However, all vehicles in the simulator depend on
the designed cost function and model. The method has not
been tested extensivly on real world data.

Nilsson et al. [10], [11] formulate cooperative planning as
an optimization problem under a Model Predictive Control
(MPC) framework. The weighted effects from acceleration
and braking are optimized subject to the trajectory’s shape
and feasibility. The author transforms the problem into a QP
optimization. However, it requires prior knowledge of other
vehicles’ trajectories and the manual tuning of weights is
difficult.

The work described above has focused on current state
and neglected historical data. One possible reason is that
involving more data dramatically increases the dimension

of the parameters, which makes the computation intractable.
Alexander et al. and Galcera et al. [12] extended the reaction
ability of autonomous cars from a single lane to multiple
lanes, including lane changes and intersection navigation.
They formulated the problem as a Multi-policy Decision
Making (MDPM), and used a finite set of a priori known
policies and sampling to make the computation tractable.
Their method requires forward simulation and a hand-tuned
reward function. As mentioned in the literature, the forward
simulation is time-consuming and requires a simple motion
model.

Prior methods either ignore past data or need complex
forward simulations to obtain a discretized policy. However,
past data are helpful in recognizing human intentions and
reduce the effect of sensing failures. Therefore, in our model,
past data play an important role in intention estimation. Our
method does not require forward simulation or a manually
designed reward function and discount factor. The transition
model is directly trained from real driving data, and the
only free parameter we need to determine is the number of
speed nodes. The proposed method is computationally more
efficient than the multi-policy decision making framework
and more robust than other methods which only consider
current states. In addition, compared with previous methods
(MPDM in [12] and GeoACC, which is used as a baseline
method in [5] and iPCB [5]), experimental results show that
the proposed method is safer and more efficient.

III. METHOD

A. 1-on-1 PGM and its evaluation

Human drivers estimate others’ intentions by observ-
ing their kinematic information and environment, e.g.,
speed changing, locations and road geometry. The 1-on-
1 PGM[2], emulates this observation-estimation process to
obtain human-like social behavior. Hence the essential part of
the method is to establish the relationship among observable
variables (e.g., speeds and locations) of merging vehicles
and their intentions. As shown in Fig. 2, the PGM takes
speeds and time-to-arrival. Speed nodes V1, V2, ..., Vn keep
track of speed changes of a merging vehicle for a short
period, at relatively high frequency. Here we assume that
the current speed is only affected by previous speed and
the intention (which will decide either accelerating, decel-
erating or keeping the previous speed), and the intention
does not change as fast as the update cycle rate. That
is, the intention stays unchanged during each estimation.
Time-to-arrival nodes Tm, Th are for the merging vehicle
and the host vehicle, respectively. The topology describes
this dependency: times-to-arrival affect intentions, therefore
speed changes. However, the intention is a latent variable
which cannot be directly detected. The estimation of the
intention depends on observations of historical speeds, times-
to-arrival and the structure of the PGM. Thus, the estimation
of the intention is to evaluate the conditional probability of
the intention given observed speeds and times-to-arrival, in
Equation 1.



Fig. 3: Multi-Merging PGM with a leading car.

logP (I|V, Tm, Th) = logP (V, Tm, Th|I)P (I)
= logP (V|I)P (Tm, Th|I)P (I)

=α

n∑
i=2

logP (Vi|Vi−1, I)︸ ︷︷ ︸
Speed Term

+

logP (Tm, Th|I)︸ ︷︷ ︸
Time Term

+

logP (I)︸ ︷︷ ︸
Prior Term

(1)

In Equation 1, I is intention, V is a vector of recent speeds:
V = [V0, V1, ..., Vn], and Tm, Th are respectively the times-
to-arrival of the merging and host vehicles. Both speeds
and distances to the merging points affect the intentions.
Equation 1 factorizes the complex conditional distribution of
the intention into parts: Speed Term, Time Term and Prior
Term. The factorization clearly separates the effects from
speeds and distances.Real data are applied to learn each term.
The final estimated intention is the one that maximizes the
combination of three terms. The estimated intention is:

I∗ = argmax
I

logP (I|V, Tm, Th) (2)

B. Multi-Merging Leading PGM

The 1-on-1 model handles one merging vehicle w.r.t. a
host vehicle. In reality (also in our dataset), there is often
more than one merging vehicle on the ramp, so the 1-on-1
model is insufficient. Moreover, in the main lane, there is
often a leading vehicle running closely in front of the host
vehicle. Obviously, while reacting to the merging vehicle, we
need to be cognizant of the leading vehicle by keeping a safe
distance. The following sections build on the 1-on-1 model
to create a Multi-Merging Leading PGM to handle multiple
merging vehicle and leading vehicle scenarios. In addition,
a rule is introduced to react based on estimated intentions
w.r.t. the host and the leading vehicle.

The Multi-Merging PGM method has two significant mod-
ifications compared with the single PGM model:

1 The single PGM model is duplicated and applied to each
merging vehicle to generate an instant intention array.

2 The process is also applied to the leading vehicle, to
obtain the leading vehicle’s estimate of the merging
vehicles’ intentions.

Fig. 3 shows a merging example with three merging
vehicles and one leading vehicle. The three PGMs on the
left estimate the intentions of merging vehicles w.r.t. the
host vehicle; the three PGMs on the right estimate the
intentions w.r.t. the leading vehicle. At the bottom of the
figure, there are two merging vehicle intention arrays: one for
the autonomous vehicle (with green-outlined boxes) and one
for the leading vehicle (with yellow-outlined boxes). Each
element of an array contains the estimated intention of one
of the merging vehicles.

Ideally, each of the arrays contains at most one pivot.
The pivot corresponds to the vehicle that divides the array
of merging vehicles into two groups: a not yielding and a
yielding group. Merging vehicles running ahead of the pivot
(including the pivot itself) will not yield to the vehicle on
the main road; those running behind the pivot will yield.
According to the definition, if no vehicle yields, the pivot
vehicle will be the last one in the merging group; if all
vehicles yield, the pivot is “NULL”. Since the pivot is the
last vehicle that does not yield, the autonomous / leading
vehicle should follow the pivot by using an aggressive
distance keeping model, without considering other merging
vehicles. (Because the merging vehicles which run behind
the pivot are identified to yield to the vehicle on the main
road, the merging vehicle behind the pivot will naturally
keep a reasonable distance between itself and the main-
road vehicle.) After identifying pivots for both the leading
vehicle and the autonomous vehicle, a deterministic rule-
based planner is proposed to activate different behaviors for
the autonomous vehicle. The rule-based planner is described
in the next section.

C. Pivot rules

Note that the autonomous vehicle is always behind the
leading vehicle, and the merging vehicles behind the pivot
must yield to their corresponding main-road vehicle. We use
Ph, Pl to denote the pivot merging car for the autonomous
car and the leading car, respectively. Then Ph = Pl if the
autonomous car and the leading car have the same piovt;
Ph < Pl if the pivot for the autonomous car runs behind
the leading car’s; Ph > Pl if the pivot for the autonomous
car runs ahead of the leading car’s. Deterministic cases and
corresponding rules are shown in Fig. 4. In each subfigure,
the upper array (green boxes) is the merging intentions
w.r.t. the host vehicle; and the lower array (yellow boxes)
is the merging intentions w.r.t the leading vehicle. In each
array, each cell corresponds to a merging car. The number
of merging cars and cells may change. A blue cell means
Yield, and a red cell means Not Yield. The leftmost red cell
corresponds to the pivot merging car.



(a) Ph > Pl : Host follows lead (b) Ph < Pl : Host follows its own pivot (c) Ph = Pl(including null) : Host fol-
lows leading

(d) Ph is null and Pl is not null : Host
follows leading

(e) Pl is null and Ph is not null : Host
Follows its pivot

Fig. 4: Illustration of the pivot rules, with examples of pivot cases and corresponding rules. Numbers of cars and positions of pivot
dynamically change according to real situations.

D. Distance Keeping Model

The essential parts of the proposed method are the eval-
uation of the conditional probability and the pivot rule. The
ramp merging control yields to a distance keeping problem.
Unlike the standard car-following model, it is not necessary
to follow the car which runs ahead of the host. Instead, the
host vehicle may follow and keep the longitudinal distance
with one car on the merging ramp. Sections III-B and III-C
introduced the estimation approach to decided which car to
follow. The method can easily be plugged into a behavioral
planning framework such as that proposed by Wei [1], by
using off-the-shelf distance keeping model, as described in
[13], [14].

IV. EXPERIMENTAL RESULTS

The performance of the proposed method was tested
in simulation. The simulation runs on a standard laptop
equipped with Intel CORE i7-level processors. The intention
estimation methods are single-thread, non-parallel. In the
tests, 70% of the real merging ramp data from the US-101
and I-80 highways in the NGSIM dataset [15] are used to
exemplify merging vehicle behavior and train the model; the
remaining 30% are replayed to generate simulated scenarios
for testing. The datasets are taken from merging ramp regions
which are about 600 meters long. Each vehicle traveling in
the rightmost lane of the main road is considered a potential
host vehicle, as long as it does not change lanes. From the
time a host enters the monitored region until it leaves it, the
leading vehicle and all vehicles on the ramp are grouped
with the host vehicle. There are 354 merging-host-leading
groups in the US-101 dataset, and 452 such groups in the
I-80 dataset, thus 806 groups in total. Each group contains a
host vehicle, a leading vehicle and multiple merging vehicles.
Trajectories of these groups are used to train and test the
model.

Details of the traffic condition and geometry information
are shown in Table I. The low SMS [16] (space mean speed
value) indicates congestion conditions. It can be seen in Table
I that there is congestion and I-80 and US-101 have similar
traffic conditions.

TABLE I: Features of the US-101 and I-80 datasets

Dataset Lmerge SMS Num. of Groupsps.
m m/s (mph)

US-101 90.4 12.4 (27.7) 354
I-80 110.8 14.2 (31.3) 452

The proposed algorithm is compared with three previous
merging methods: GeoACC, iPCB [6] and MPDM [12].
GeoACC is ACC with an expanded field-of-view to be able
to track both merging vehicles and the leading vehicle. It
sets the closest vehicle ahead of the host (whether in the
same lane or on the merging ramp) as the following target.
Real merging-vehicle data are replayed and the host vehicle
reacts to the real merging vehicles’ intentions and behaviors.
The start point of the host vehicle is set to be the same
as that in the real data, but it is subsequently controlled by
a combination of either GeoACC, iPCB, MPDM or MML-
PGM for target selection with ACC for distance-keeping.
All vehicles except the host vehicle are replayed from the
real data. We use the following criteria to examine different
aspects of the performance of the algorithms:

A Collision rate and time-to-collision
B Similarity to human drivers
C Computational efficiency

A. Collision rate and time-to-collision

We use collision rate and time-to-collision (TTC) to the
vehicle which runs in front of the host as safety criteria.
Collision rates for the four algorithms are shown in Table
II. In the dataset, human-driven vehicles have no collisions.
GeoACC, iPCB and MPDM have high collision rates relative
to MML-PGM. GeoACC only follows the closest merging
vehicle without considering its intention, whereas iPCB con-
siders the closest vehicle’s intention. MPDM estimates the
most likely behavior based on a simple forward simulation
model and a manually designed reward function. None of
them is easy to design to reflect real maneuver actions in
forward simulation and a rewards mechanism for selecting a
proper trajectory. Note that even the proposed MML-PGM
has a non-zero collision rate, which means the algorithm is
still imperfect. The model is not yet sophisticated enough,



TABLE II: Statistical results for different Merging Control Algo-
rithms and human-driven vehicles.

Algorithms GeoACC iPCB MPDM MML-PGM Human

Collision Rate 20.0% 18.9% 15.9% 7.2% 0.0%
K-L divergence 0.24 0.11 0.61 0.02 —

Rate/car (ms) 0.05 0.20 100.55 0.08 —

Fig. 5: TTC to the leading vehicle when the host vehicle reaches
the merging point.

since it: 1) does not predict trajectories of merging vehicles,
the host vehicle and the leading vehicle; 2) only has a
binary output to react to the merging vehicles and the leading
vehicle; 3) cannot handle uncertainty, e.g., noise.

The second safety criterion considered is the Time-To-
Collision (TTC) between the host vehicle (the ego vehicle)
and the leading vehicle (which runs ahead of the host vehicle)
when the host vehicle reaches the merge point:

TTC = (carlead − carhost)/(vhost − vlead) (3)

Note that the leading vehicle always runs ahead of the host
vehicle, so the numerator is always non-negative. If the speed
of the host vehicle is lower than that of its leading vehicle
(either the original leading vehicle or a merged vehicle),
the denominator is negative, so the TTC is negative and no
collision can occur, since the vehicle ahead is moving faster
than the vehicle behind. There will be a collision if the TTC
is positive, which means that the host vehicle is moving faster
than the leading vehicle. We examine the distribution of the
host vehicles’ TTC for the four algorithms with the real data.
The results are shown in Fig. 5.

Fig. 5 shows the Probability Mass Functions (PMF on
the y-axis) over the TTCs that are generated from the four
different algorithms and human-driven vehicles. The peak
and majority (about 80%) of the MML-PGM TTCs are
negative, whereas the other algorithms’ TTCs have a peak at
zero on the x-axis (indicating collision) and about 50% of the
testing cases have positive TTC. The TTC results correspond
to what is shown in Table II: in most of the test cases, MML-
PGM has negative TTC, which ensures that the gap between
the host and its leading vehicle keeps growing, and results
in a lower collision rate than that of the other algorithms.

Fig. 6: Distributions of differences between human-driven trajec-
tories and four algorithms.

Note that the majority of the human-driven vehicles (grey
curve) also have negative TTC. But the peak is closer to
zero, which means that human drivers are more aggressive
than MML-PGM but still retain a zero collision rate.

B. Similarity to human drivers

We also examined the similarity of the trajectories gener-
ated by each of the four algorithms to those of human drivers
using two criteria:

• The Kullback-Leibler divergence (as used in [17]) be-
tween the host-vehicle TTC distribution of each of the
four algorithms and that of the real data. The results are
given in the second row of Table II.

• The distribution of the differences between human-
driven vehicles’ trajectories and the trajectories gener-
ated by the four algorithms, which is shown in Fig. 6;

The second row of Table II shows the K-L divergence of
the TTC distributions (the curves in Fig. 5) between human-
driven vehicles and each of the four algorithms. K-L diver-
gence indicates the differences between two distributions,
and it provides an overall description of similarity between
the generated behaviors and the human-driven vehicles in
terms of the time-to-collision to the leading vehicle at the
moment when the host vehicle reaches the merging point.
In the table, GeoACC, iPCB and MDPM have high K-
L divergences relative to MML-PGM. The result indicates
that MML-PGM behaves more similarly to human-driven
vehicles at the merging point.

While the second row of Table II compares the host-
lead vehicle TTC only at the time the host vehicle reaches
the merge point, Fig. 6 evaluates the similarity of the full
trajectories generated by the four algorithms to those of the
human-driven vehicles. The figure shows the distribution of
the average L2-norm (D) between two trajectories:

D =
1

T

∫ T

0

(falg(t)− h(t))2dt (4)

where h(t) is the human-driven trajectory, falg(t) is the
trajectory resulting from applying one of the four algorithms,



and T is the time for each merging episode, which is used to
normalize the result due to differing trajectory lengths. Fig.
6 shows that the distribution of D using MML-PGM tends
to be closer to zero than using the other algorithms. The
result indicates that MML-PGM generates behaviors more
similar to those of human drivers than does GeoACC, iPCB
or MDPM.

C. Computational Efficiency

The third row of Table II shows the time required for
estimating intentions for each merging vehicle. MPDM needs
the longest time for estimating one merging vehicle, and the
forward simulation takes the majority of the computation
time. Approximately 100ms is acceptable for one merging
car, which results in a 10Hz update rate. However, in a
congestion scenario, a 100-meter merging ramp can have
about 10-20 vehicles. Thus the update rate will drop to
0.5-1Hz for estimating all merging vehicles, which is not
sufficient for driving behavioral planning in this scenario. In
the original paper, the author stated that their C implemen-
tation runs at 1Hz updating rate. Our proposed method takes
only 0.08ms for estimating one vehicle. Even though MML-
PGM is not the most computationally efficient algorithm,
its update rate is high enough and close to GeoACC. In
a congestion scenario, MML-PGM is still able to run at
a 625Hz (1.6ms) update rate to estimate intentions of all
merging cars. However, since human decisions do not change
at such a high rate, we limit the cycle rate to 10Hz in tests.

V. CONCLUSION

In this paper, we introduced the Multi-Merging Leading
PGM (MML-PGM) algorithm, which enables an autonomous
vehicle to generate cooperative behaviors with multiple
human-driven vehicles in highway merging scenarios. The
method senses speed and distance changes of other vehicles
in order to estimate their intentions. A probabilistic graphical
model is applied to organize the relationships between sensed
data and intentions. Furthermore, using the PGM, higher-
dimensional conditional probability is separated into several
simpler parts, which makes the evaluation more feasible and
efficient.

The method was tested in simulation with real highway
ramp merging data. The method integrates effects of sur-
rounding vehicles, including the leading vehicle running
ahead of the host vehicle on the main road and merging
vehicles running on the ramp. The results exhibit a signifi-
cantly lower collision rate and more negative TTCs to leading
vehicles compared with previous methods, which indicates
the advantages of MML-PGM over these methods. The lower
divergence between human-driven vehicles and MML-PGM
TTC distributions, and the lower average distance to human-
driven trajectories indicate that MML-PGM generates more
human-like behaviors than either GeoACC, iPCB or MPDM.

In the future, we will refine the model to handle uncertain-
ties, e.g., noisy observations of vehicle location and speed,
and extend the model to estimate longer-term intentions.
Based on the long-term estimation of possible trajectories

of merging vehicles, the interaction or negotiation between
merging vehicles and host vehicle will be improved. We will
also refine the model to fit more types of cooperative situ-
ations, such as navigating through intersections and making
active lane changes.
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